Orientation selectivity with organic photodetectors and an organic electrochemical transistor

Neuroinspired device architectures offer the potential of higher order functionalities in information processing beyond their traditional microelectronic counterparts. Here we demonstrate a neuromorphic function of orientation selectivity, which is inspired from the visual system, with a combination of organic photodetectors and a multi-gated organic electrochemical transistor based on poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The device platform responds preferably to different orientations of light bars, a behaviour that resembles orientation selectivity of visual cortex cells. These results pave the way for organic-based neuromorphic devices with spatially correlated functionalities and potential applications in the area of organic bioelectronics.

[1]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[2]  George G. Malliaras,et al.  Steady‐State and Transient Behavior of Organic Electrochemical Transistors , 2007 .

[3]  Yan Lei,et al.  Memristive learning and memory functions in polyvinyl alcohol polymer memristors , 2014 .

[4]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[5]  Henry S. White,et al.  Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor , 1984 .

[6]  Dominique Vuillaume,et al.  Electrolyte-gated organic synapse transistor interfaced with neurons , 2016, 1608.01191.

[7]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[8]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[9]  George G. Malliaras,et al.  An Organic Electronics Primer , 2005 .

[10]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[11]  T. Berzina,et al.  A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties , 2015, Chemical science.

[12]  George G. Malliaras,et al.  Synaptic plasticity functions in an organic electrochemical transistor , 2015 .

[13]  Salvatore Iannotta,et al.  A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor , 2015 .

[14]  Róisín M. Owens,et al.  The organic electrochemical transistor for biological applications , 2015 .

[15]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[16]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[17]  P. Leleux,et al.  In vivo recordings of brain activity using organic transistors , 2013, Nature Communications.

[18]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[19]  Hyunsang Hwang,et al.  Organic core-sheath nanowire artificial synapses with femtojoule energy consumption , 2016, Science Advances.

[20]  G. Malliaras,et al.  Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors , 2015, Advanced materials.

[21]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[22]  S. Yuasa,et al.  A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy , 2016, Scientific Reports.

[23]  George G. Malliaras,et al.  Orientation selectivity in a multi-gated organic electrochemical transistor , 2016, Scientific Reports.

[24]  Qing Wan,et al.  Artificial synapse network on inorganic proton conductor for neuromorphic systems. , 2014, Nature communications.

[25]  George G. Malliaras,et al.  The Rise of Organic Bioelectronics , 2014 .