Sentences over Integral Domains and Their Computational Complexities

LetRbe a Hilbertian domain and letKbe its fraction field. Let?(x1,?,xn,y) be a quantifier free arithmetical formula overR. We may also take?(x1,?,xn,y) to be an arithmetical formula overKx1,?,xn] and write it as?(y). In this paper we show that ifRhas enough non-units and ?x1??xn?y?(x1,?,xn,y), called an ?n? sentence, is true inR, then ?y?(y) is true inKx1,?,xn]. Also, ifR=KT], whereKis an infinite integral domain and?x1??xn?y?(x1,?,xn,y)is true inR, then ?y?(y) is true inRx1,?,xn]. These results are applied to find the upper and lower bounds of the time complexities of various decision problems on diophantine equations with parameters and arithmetical sentences. Some of the results are: 1. The decision problem of ?? sentences and diophantine equations with parameters over the ring of integers of a global field are co-NP-complete. 2. The decision problem of ?? sentences over the ring of integers of a global field is NP-complete. 3. LetKbe an infinite domain, the time complexities of the decision problems of equations with parameters and ?? sentences over the polynomial ringKt] are polynomial time reducible to factoring polynomials overK. 4. The decision problem of ?? sentences over all algebraic integer rings is in P. 5. The decision problem of ?? sentences over all integral domains with characteristic 0 is in P. 6. The time complexity of the decision problem of ?? sentences over all integral domains is polynomial time reducible to factoring integers overZand factoring polynomials over finite fields.

[1]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.

[2]  Erich Kaltofen,et al.  Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..

[3]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[4]  Erich Kaltofen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..

[5]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[6]  D. Hilbert,et al.  Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten , 1933 .

[7]  Michael D. Fried,et al.  Solving Diophantine Problems Over All Residue Class Fields of a Number Field and All Finite Fields , 1976 .

[8]  Arjen K. Lenstra Factoring Multivariate Integral Polynomials , 1984, Theor. Comput. Sci..

[9]  Martin Fürer,et al.  The Complexity of Presburger Arithmetic with Bounded Quantifier Alternation Depth , 1982, Theor. Comput. Sci..

[10]  Arjen K. Lenstra Factoring Multivariate Polynomials over Finite Fields , 1985, J. Comput. Syst. Sci..

[11]  Erich Grädel,et al.  Dominoes and the Complexity of Subclasses of Logical Theories , 1989, Ann. Pure Appl. Log..

[12]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[13]  E. Artin,et al.  Axiomatic characterization of fields by the product formula for valuations , 1945 .

[14]  D. Grigor'ev,et al.  Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .

[15]  Surjective polynomial maps, and a remark on the jacobian problem , 1990 .

[16]  B. Scarpellini Complexity of subcases of Presburger arithmetic , 1984 .

[17]  Shih Ping Tung,et al.  Algorithms for Sentences over Integral Domains , 1990, Ann. Pure Appl. Log..

[18]  Shih Ping Tung The Bounds of Skolem Functions and Their Applications , 1995, Inf. Comput..

[19]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[20]  D. Hilbert Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten. , 1892 .

[21]  Shih Ping Tung,et al.  Computational Complexity of Arithmetical Sentences , 1995, Inf. Comput..

[22]  R. Gilmer Prüfer domains and rings of integer-valued polynomials , 1990 .

[23]  Arjen K. Lenstra Factoring Multivariate Polynomials over Algebraic Number Fields , 1987, SIAM J. Comput..

[24]  Donald W. Loveland,et al.  Presburger arithmetic with bounded quantifier alternation , 1978, STOC.

[25]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[26]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[27]  Erich Kaltofen Effective Hilbert Irreducibility , 1985, Inf. Control..

[28]  Ming-Deh A. Huang Factorization of polynomials over finite fields and factorization of primes in algebraic number fields , 1984, STOC '84.

[29]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[30]  Henry B. Mann,et al.  Introduction to algebraic number theory , 1955 .

[31]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[32]  Leonard M. Adleman,et al.  NP-Complete Decision Problems for Binary Quadratics , 1978, J. Comput. Syst. Sci..

[33]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[34]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[35]  Tung Shih-Ping On weak number theories , 1985 .

[36]  Gary L. Miller,et al.  Solvability by Radicals is in Polynomial Time , 1985, J. Comput. Syst. Sci..

[37]  Andrzej Schinzel,et al.  Selected topics on polynomials , 1982 .

[38]  A. Chistov,et al.  Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .

[39]  J. Heijenoort From Frege To Gödel , 1967 .

[40]  S. D. Cohen The Distribution of Galois Groups and Hilbert's Irreducibility Theorem , 1981 .

[41]  Shih Ping Tung Complexity of Sentences Over Number Rings , 1991, SIAM J. Comput..

[42]  James P. Jones Classification of Quantifier Prefixes Over Diophantine Equations , 1981, Math. Log. Q..

[43]  Shih Ping Tung,et al.  Polynomial Time Algorithms for Sentences over Number Fields , 1992, Inf. Comput..

[44]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[45]  Erich Kaltofen,et al.  Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..

[46]  Shih Ping Tung Definability in Number Fields , 1987, J. Symb. Log..

[47]  Shih Ping Tung,et al.  Computational Complexities of Diophantine Equations with Parameters , 1987, J. Algorithms.

[48]  V. G. Sprindzhuk,et al.  ACHIEVEMENTS AND PROBLEMS IN DIOPHANTINE APPROXIMATION THEORY , 1980 .

[49]  Susan Landau,et al.  Factoring Polynomials Over Algebraic Number Fields , 1985, SIAM J. Comput..

[50]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[51]  A. L. Chistov Efficient Factoring Polynomials over Local Fields and Its Applications , 1990 .