On the significance of temporally structured activity in the dorsal lateral geniculate nucleus (LGN)

[1]  E. Adrian,et al.  The action of light on the eye , 1928, The Journal of physiology.

[2]  A. Lit The magnitude of the Pulfrich stereophenomenon as a function of binocular differences of intensity at various levels of illumination. , 1949, The American journal of psychology.

[3]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[4]  H. Barlow,et al.  MAINTAINED ACTIVITY IN THE CAT'S RETINA IN LIGHT AND DARKNESS , 1957, The Journal of general physiology.

[5]  G L GERSTEIN,et al.  An approach to the quantitative analysis of electrophysiological data from single neurons. , 1960, Biophysical journal.

[6]  F. Plum Handbook of Physiology. , 1960 .

[7]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[8]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[9]  [Periodic activation phases of visual neurons after short light stimuli of different duration. Relation to the periodic after-images and the Charpentier interval]. , 1962, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[10]  R W DOTY,et al.  Oscillatory potentials in the visual system of cats and monkeys , 1963, The Journal of physiology.

[11]  W. Levick,et al.  Statistical analysis of the dark discharge of lateral geniculate neurones , 1964, The Journal of physiology.

[12]  W. Levick,et al.  Maintained activity of lateral geniculate neurones in darkness , 1964, The Journal of physiology.

[13]  J. Fuster,et al.  INTERVAL ANALYSIS OF CELL DISCHARGE IN SPONTANEOUS AND OPTICALLY MODULATED ACTIVITY IN THE VISUAL SYSTEM. , 1965, Archives italiennes de biologie.

[14]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[15]  M. Ten Hoopen Impulse sequences of thalamic neurons — An attempted theoretical interpretation , 1966 .

[16]  L Maffei,et al.  Retinal ganglion cell response to sinusoidal light stimulation. , 1966, Journal of neurophysiology.

[17]  R. H. Steinberg,et al.  Oscillatory activity in the optic tract of cat and light adaptation. , 1966, Journal of neurophysiology.

[18]  M. Verzeano,et al.  Periodic activity in the visual system of the cat. , 1967, Vision research.

[19]  J. Phillis,et al.  The inhibitory action of monoamines on lateral geniculate neurones , 1967, The Journal of physiology.

[20]  H. Barlow,et al.  Changes in the maintained discharge with adaptation level in the cat retina , 1969, The Journal of physiology.

[21]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[22]  R W Guillery,et al.  Patterns of synaptic interconnections in the dorsal lateral geniculate nucleus of cat and monkey: a brief review. , 1971, Vision research.

[23]  M. Jouvet,et al.  The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. , 1972, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[24]  O. Creutzfeldt,et al.  Electrophysiology and Topographical Distribution of Visual Evoked Potentials in Animals , 1973 .

[25]  W. Levick Variation in the response latency of cat retinal ganglion cells. , 1973, Vision research.

[26]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[27]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[28]  P Lennie,et al.  The control of retinal ganglion cell discharge by receptive field surrounds. , 1975, The Journal of physiology.

[29]  W. Singer,et al.  The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus , 1977, Brain Research.

[30]  W Singer,et al.  Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. , 1977, Physiological reviews.

[31]  B. Cleland,et al.  Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. , 1977, Journal of neurophysiology.

[32]  D. Burr Acuity for apparent vernier offset , 1979, Vision Research.

[33]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[34]  J Bullier,et al.  Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat. , 1979, Journal of neurophysiology.

[35]  E. Basar EEG-brain dynamics: Relation between EEG and Brain evoked potentials , 1980 .

[36]  J. Bouyer,et al.  Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. , 1981, Electroencephalography and clinical neurophysiology.

[37]  V Virsu,et al.  Phase of responses to moving sinusoidal gratings in cells of cat retina and lateral geniculate nucleus. , 1981, Journal of neurophysiology.

[38]  H. Wässle,et al.  Response latency of brisk‐sustained (X) and brisk‐transient (Y) cells in the cat retina , 1982, The Journal of physiology.

[39]  J. Hirsch,et al.  Electrophysiological study of the perigeniculate region during natural sleep in the cat , 1982, Experimental Neurology.

[40]  M W Levine,et al.  Statistics of the maintained discharge of cat retinal ganglion cells. , 1983, The Journal of physiology.

[41]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[42]  G. Barrionuevo,et al.  Lateral geniculate nucleus unitary discharge in sleep and waking: state- and rate-specific aspects. , 1983, Journal of neurophysiology.

[43]  M. Ariel,et al.  Rhythmicity in rabbit retinal ganglion cell responses , 1983, Vision Research.

[44]  Adam M. Sillito,et al.  The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN) , 1983, Brain Research.

[45]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[47]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[48]  U. Eysel,et al.  Inhibitory periphery effect in geniculate neurons after elimination of specific retinogeniculate excitation , 1985, Neuroscience Letters.

[49]  C. Malsburg Nervous Structures with Dynamical Links , 1985 .

[50]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[51]  A. L. Humphrey,et al.  Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the cat , 1985, The Journal of comparative neurology.

[52]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements , 1985, The Journal of comparative neurology.

[53]  V. Ramachandran,et al.  The perception of apparent motion. , 1986, Scientific American.

[54]  G Oakson,et al.  Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones. , 1986, The Journal of physiology.

[55]  R H Masland,et al.  The functional architecture of the retina. , 1986, Scientific American.

[56]  K. Kratz,et al.  Visual latency of ganglion X- and Y-cells: A comparison with geniculate X- and Y-cells , 1987, Vision Research.

[57]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[58]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[59]  H. Inomata,et al.  Projection from the pretectal nuclei to the dorsal lateral geniculate nucleus in the cat: a wheat germ agglutinin-horseradish peroxidase study , 1987, Brain Research.

[60]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[61]  Hajime Inomata,et al.  Visual pretectal neurons projecting to the dorsal lateral geniculate nucleus and pulvinar nucleus in the cat , 1988, Brain Research Bulletin.

[62]  F. Wörgötter,et al.  A simple glass-coated, fire-polished tungsten electrode with conductance adjustment using hydrofluoridic acid , 1988, Journal of Neuroscience Methods.

[63]  P. C. Murphy,et al.  The modulation of the retinal relay to the cortex in the dorsal lateral geniculate nucleus , 1988, Eye.

[64]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[65]  Y. Fukuda,et al.  Effects of EEG synchronization on visual responses of the cat's geniculate relay cells: a comparison among Y,X and W cells , 1988, Brain Research.

[66]  Binocular interactions in the cat's dorsal lateral geniculate nucleus. I. Spatial-frequency analysis of responses of X, Y, and W cells to nondominant-eye stimulation. , 1989, Journal of neurophysiology.

[67]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[69]  D. Mastronarde Correlated firing of retinal ganglion cells , 1989, Trends in Neurosciences.

[70]  C. E. Schroeder,et al.  Timing and distribution of flash-evoked activity in the lateral geniculate nucleus of the alert monkey , 1989, Brain Research.

[71]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[72]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. , 1990, Journal of neurophysiology.

[73]  M. Steriade,et al.  Brainstem Control of Wakefulness and Sleep , 1990, Springer US.

[74]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[75]  E Ahissar,et al.  Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[76]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[77]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[78]  D. McCormick,et al.  Noradrenergic and serotonergic modulation of a hyperpolarization‐activated cation current in thalamic relay neurones. , 1990, The Journal of physiology.

[79]  H Sompolinsky,et al.  Global processing of visual stimuli in a neural network of coupled oscillators. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[80]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Inter‐Columnar Interaction as Determined by Cross‐Correlation Analysis , 1990, The European journal of neuroscience.

[81]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. III. Response predictions of a channel model with multiple spatial-to-temporal filters. , 1991, Journal of neurophysiology.

[82]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. I. Responses to two-dimensional stimuli. , 1991, Journal of neurophysiology.

[83]  I. Soltesz,et al.  Low‐frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[84]  J. Bolz,et al.  Functional specificity of a long-range horizontal connection in cat visual cortex: a cross-correlation study , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  L. Optican,et al.  Lateral geniculate neurons in behaving primates. II. Encoding of visual information in the temporal shape of the response. , 1991, Journal of neurophysiology.

[86]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[87]  P König,et al.  Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[88]  S. Sherman,et al.  A GABAergic projection from the pretectum to the dorsal lateral geniculate nucleus in the cat , 1991, Neuroscience.

[89]  D. McCormick,et al.  Serotonin and noradrenaline excite GABAergic neurones of the guinea‐pig and cat nucleus reticularis thalami. , 1991, The Journal of physiology.

[90]  D. Paré,et al.  Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[91]  A. Leventhal The neural basis of visual function , 1991 .

[92]  R. Llinás,et al.  In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[93]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[94]  W. Singer,et al.  Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey , 1992, The European journal of neuroscience.

[95]  I. Soltesz,et al.  A role for low‐frequency, rhythmic synaptic potentials in the synchronization of cat thalamocortical cells. , 1992, The Journal of physiology.

[96]  C. Gray,et al.  Visually evoked oscillations of membrane potential in cells of cat visual cortex. , 1992, Science.

[97]  V. Bringuier,et al.  Synaptic origin of rhythmic visually evoked activity in kitten area 17 neurones. , 1992, Neuroreport.

[98]  Paul Antoine Salin,et al.  Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. , 1992, Visual neuroscience.

[99]  Michael Brosch,et al.  Stimulus-Specific Synchronizations in Cat Visual Cortex: Multiple Microelectrode and Correlation Studies from Several Cortical Areas , 1992 .

[100]  M. Young,et al.  On oscillating neuronal responses in the visual cortex of the monkey. , 1992, Journal of neurophysiology.

[101]  T. Bullock,et al.  Induced Rhythms in the Brain , 1992, Brain Dynamics.

[102]  D N Mastronarde,et al.  Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: Receptive-field properties and retinal inputs , 1992, Visual Neuroscience.

[103]  Jean-Christophe Beaux,et al.  Modulations corticales de la structure temporelle fine des trains d'impulsions dans le corps genouillé latéral dorsal du chat , 1992 .

[104]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[105]  David A. McCormick,et al.  Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[106]  K Kirschfeld,et al.  Oscillations in the insect brain: do they correspond to the cortical gamma-waves of vertebrates? , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[107]  W. Gerstner,et al.  A ‘microscopic’ model of collective oscillations in the cortex , 1992 .

[108]  S. Sherman,et al.  Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. , 1992, Journal of neurophysiology.

[109]  M. Steriade,et al.  Electrophysiology of a slow (0.5‐4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. , 1992, The Journal of physiology.

[110]  R. Freeman,et al.  Oscillatory discharge in the visual system: does it have a functional role? , 1992, Journal of neurophysiology.

[111]  K. Hoffmann,et al.  Physiological Characterization of Pretectal Neurons Projecting to the Lateral Geniculate Nucleus in the Cat , 1992, The European journal of neuroscience.

[112]  G. Pfurtscheller,et al.  Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. , 1992, Neuroreport.

[113]  H R Dinse,et al.  Evoked oscillatory cortical responses are dynamically coupled to peripheral stimuli. , 1992, Neuroreport.

[114]  J. Robson,et al.  Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance , 1992, Visual Neuroscience.

[115]  U. Eysel,et al.  EEG-dependent modulation of response dynamics of cat dLGN relay cells and the contribution of corticogeniculate feedback , 1992, Brain Research.

[116]  M. Deschenes,et al.  Voltage-dependent 40-Hz * oscillations in rat reticular thalamic neurons in vivo , 1992, Neuroscience.

[117]  F. Varela,et al.  Visually Triggered Neuronal Oscillations in the Pigeon: An Autocorrelation Study of Tectal Activity , 1993, The European journal of neuroscience.

[118]  D Contreras,et al.  Electrophysiological properties of cat reticular thalamic neurones in vivo. , 1993, The Journal of physiology.

[119]  Ehud Kaplan,et al.  Information filtering in the lateral geniculate nucleus , 1993 .

[120]  J. Robson Qualitative and quantitative analyses of the patterns of retinal input to neurons in the dorsal lateral geniculate nucleus of the cat , 1993, The Journal of comparative neurology.

[121]  C. Koch,et al.  An oscillation-based model for the neuronal basis of attention , 1993, Vision Research.

[122]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[123]  J. Donoghue,et al.  Oscillations in local field potentials of the primate motor cortex during voluntary movement. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[124]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[125]  B. Feige,et al.  Oscillatory brain activity during a motor task. , 1993, Neuroreport.

[126]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[127]  M. J. M. Lankheet,et al.  Nonlinearity and oscillations in X-type ganglion cells of the cat retina , 1993, Vision Research.

[128]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[129]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[130]  Christa Neuper,et al.  40-Hz oscillations during motor behavior in man , 1993, Neuroscience Letters.

[131]  D. Contreras,et al.  Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (≈40 HZ) spike-bursts at ≈1000 HZ during waking and rapid eye movement sleep , 1993, Neuroscience.

[132]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[133]  Barry B. Lee,et al.  Macaque ganglion cells and spatial vision. , 1993, Progress in brain research.

[134]  R. Eckhorn,et al.  High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. , 1993, Neuroreport.

[135]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[136]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[137]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[138]  P. Gaudiano Simulations of X and Y retinal ganglion cell behavior with a nonlinear push-pull model of spatiotemporal retinal processing , 1994, Vision Research.

[139]  L. Optican,et al.  Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons , 1994, Visual Neuroscience.

[140]  A. Rougeul-Buser Electrocortical Rhythms in the 40 Hz Band in Cat: In Search of Their Behavioural Correlates , 1994 .

[141]  W. Waleszczyk,et al.  20 Hz bursting beta activity in the cortico-thalamic system of visually attending cats. , 1994, Acta neurobiologiae experimentalis.

[142]  K. Hoffmann,et al.  LGN‐projecting Neurons of the Cat's Pretectum Express Glutamic Acid Decarboxylase mRNA , 1994, The European journal of neuroscience.

[143]  P. D. Spear,et al.  Influence of the superior colliculus on responses of lateral geniculate neurons in the cat , 1994, Visual Neuroscience.

[144]  K. Schäfer,et al.  Oscillation and noise determine signal transduction in shark multimodal sensory cells , 1994, Nature.

[145]  H. Dinse,et al.  The timing of processing along the visual pathway in the cat. , 1994, Neuroreport.

[146]  E. Vaadia,et al.  Synchronization in neuronal transmission and its importance for information processing. , 1994 .

[147]  R. Eckhorn,et al.  Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. , 1994, Progress in brain research.

[148]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[149]  J. Prechtl,et al.  Visual motion induces synchronous oscillations in turtle visual cortex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[150]  W. Singer,et al.  Temporal Coding in the Brain , 1994, Research and Perspectives in Neurosciences.

[151]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[152]  Peter H Schiller,et al.  The ON and OFF channels of the mammalian visual system , 1995, Progress in Retinal and Eye Research.

[153]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[154]  J. Pernier,et al.  Gamma‐range Activity Evoked by Coherent Visual Stimuli in Humans , 1995, The European journal of neuroscience.

[155]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[156]  U. Eysel,et al.  Pharmacological inactivation of pretectal nuclei reveals different modulatory effects on retino-geniculate transmission by X and Y cells in the cat , 1995, Visual Neuroscience.

[157]  F. Wörgötter,et al.  Fine structure analysis of temporal patterns in the light response of cells in the lateral geniculate nucleus of cat , 1995, Visual Neuroscience.

[158]  J J Hopfield,et al.  Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[159]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[160]  Roman Bauer,et al.  Different rules of spatial summation from beyond the receptive field for spike rates and oscillation amplitudes in cat visual cortex , 1995, Brain Research.

[161]  T. Elbert,et al.  Visual stimulation alters local 40-Hz responses in humans: an EEG-study , 1995, Neuroscience Letters.

[162]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[163]  K Funke,et al.  Possible enhancement of GABAergic inputs to cat dorsal lateral geniculate relay cells by serotonin. , 1995, Neuroreport.

[164]  D. A. McCormick,et al.  Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus , 1995, Neuroscience.

[165]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[166]  J. Rinzel,et al.  Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[167]  W. Singer,et al.  Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17. , 1995, Neuroreport.

[168]  R. Eckhorn,et al.  Synchronous High‐frequency Oscillations in Cat Area 18 , 1995, The European journal of neuroscience.

[169]  F. Rösler,et al.  Stimulus-induced gamma oscillations: harmonics of alpha activity? , 1995, Neuroreport.

[170]  D. McCormick,et al.  Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. , 1995, The Journal of physiology.

[171]  F. Wörgötter,et al.  Temporal structure in the light response of relay cells in the dorsal lateral geniculate nucleus of the cat. , 1995, The Journal of physiology.

[172]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[173]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[174]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[175]  M Steriade,et al.  Arousal--Revisiting the Reticular Activating System , 1996, Science.

[176]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[177]  M. Steriade,et al.  Intracortical and corticothalamic coherency of fast spontaneous oscillations. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[178]  Florentin Wörgötter,et al.  Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli , 1996, Biological Cybernetics.

[179]  R Eckhorn,et al.  Inhibition of sustained gamma oscillations (35-80 Hz) by fast transient responses in cat visual cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[180]  S. Sherman,et al.  Dual response modes in lateral geniculate neurons: Mechanisms and functions , 1996, Visual Neuroscience.

[181]  J. Rinzel,et al.  Propagation of spindle waves in a thalamic slice model. , 1996, Journal of neurophysiology.

[182]  F. Wörgötter,et al.  Utilizing latency for object recognition in real and artificial neural networks , 1996, Neuroreport.

[183]  W. Singer,et al.  Synchronization of neuronal responses in the optic tectum of awake pigeons , 1996, Visual Neuroscience.

[184]  P. C. Murphy,et al.  Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[185]  M. Livingstone Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. , 1996, Journal of neurophysiology.

[186]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[187]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[188]  J. Movshon,et al.  Cortical oscillatory responses do not affect visual segmentation , 1996, Vision Research.

[189]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[190]  A. Sillito,et al.  Spatial frequency tuning of orientation‐discontinuity‐sensitive corticofugal feedback to the cat lateral geniculate nucleus. , 1996, The Journal of physiology.

[191]  M. Meister Multineuronal codes in retinal signaling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[192]  Florentin Wörgötter,et al.  Using Visual Latencies to Improve Image Segmentation , 1996, Neural Computation.

[193]  D. Barth,et al.  Inter- and intra-hemispheric spatiotemporal organization of spontaneous electrocortical oscillations. , 1996, Journal of neurophysiology.

[194]  S. Bressler Interareal synchronization in the visual cortex , 1996, Behavioural Brain Research.

[195]  F. Wörgötter,et al.  Corticofugal feedback improves the timing of retino‐geniculate signal transmission , 1996, Neuroreport.

[196]  M Schürmann,et al.  Gamma responses in the EEG: elementary signals with multiple functional correlates , 1997, Neuroreport.