Conserved and variable architecture of human white matter connectivity

Whole-brain network analysis of diffusion imaging tractography data is an important new tool for quantification of differential connectivity patterns across individuals and between groups. Here we investigate both the conservation of network architectural properties across methodological variation and the reproducibility of individual architecture across multiple scanning sessions. Diffusion spectrum imaging (DSI) and diffusion tensor imaging (DTI) data were both acquired in triplicate from a cohort of healthy young adults. Deterministic tractography was performed on each dataset and inter-regional connectivity matrices were then derived by applying each of three widely used whole-brain parcellation schemes over a range of spatial resolutions. Across acquisitions and preprocessing streams, anatomical brain networks were found to be sparsely connected, hierarchical, and assortative. They also displayed signatures of topo-physical interdependence such as Rentian scaling. Basic connectivity properties and several graph metrics consistently displayed high reproducibility and low variability in both DSI and DTI networks. The relative increased sensitivity of DSI to complex fiber configurations was evident in increased tract counts and network density compared with DTI. In combination, this pattern of results shows that network analysis of human white matter connectivity provides sensitive and temporally stable topological and physical estimates of individual cortical structure across multiple spatial scales.

[1]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[2]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[3]  S. Laughlin,et al.  Energy limitation as a selective pressure on the evolution of sensory systems , 2008, Journal of Experimental Biology.

[4]  Jacobus F. A. Jansen,et al.  The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures , 2010, NeuroImage.

[5]  Liang Wang,et al.  Parcellation‐dependent small‐world brain functional networks: A resting‐state fMRI study , 2009, Human brain mapping.

[6]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[7]  Heidi Johansen-Berg,et al.  Imaging white matter diffusion changes with development and recovery from brain injury , 2008, Developmental neurorehabilitation.

[8]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[9]  Li Bai,et al.  Brain tractography using Q-ball imaging and graph theory: Improved connectivities through fibre crossings via a model-based approach , 2010, NeuroImage.

[10]  Edward T. Bullmore,et al.  Whole-brain anatomical networks: Does the choice of nodes matter? , 2010, NeuroImage.

[11]  Luciano da Fontoura Costa,et al.  Predicting the connectivity of primate cortical networks from topological and spatial node properties , 2007, BMC Systems Biology.

[12]  Arthur W. Toga,et al.  Construction of a 3D probabilistic atlas of human cortical structures , 2008, NeuroImage.

[13]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[14]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[15]  Alan C. Evans,et al.  Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. , 2007, Cerebral cortex.

[16]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[17]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[18]  Edward T. Bullmore,et al.  Age-related changes in modular organization of human brain functional networks , 2009, NeuroImage.

[19]  E A Leicht,et al.  Community structure in directed networks. , 2007, Physical review letters.

[20]  Marc-Thorsten Hütt,et al.  Organization of Excitable Dynamics in Hierarchical Biological Networks , 2008, PLoS Comput. Biol..

[21]  Paul J. Laurienti,et al.  Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data , 2010, NeuroImage.

[22]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[23]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[24]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[25]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[26]  Heidi Johansen-Berg,et al.  Imaging the relationship between structure, function and behaviour in the human brain , 2009, Brain Structure and Function.

[27]  M. Kochen,et al.  Contacts and influence , 1978 .

[28]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[29]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[30]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Haldun M. Ozaktas,et al.  Paradigms of connectivity for computer circuits and networks , 1992 .

[32]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[33]  Egon Wanke,et al.  Optimization of cortical hierarchies with continuous scales and ranges , 2009, NeuroImage.

[34]  Karl-Olof Lövblad,et al.  Iconography : Brain and spine MRI artifacts at 3 Tesla , 2009 .

[35]  Dmitri B. Chklovskii,et al.  Exact Solution for the Optimal Neuronal Layout Problem , 2004, Neural Computation.

[36]  Stephen M. Smith,et al.  Age-related changes in grey and white matter structure throughout adulthood , 2010, NeuroImage.

[37]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[38]  R. Guimerà,et al.  Classes of complex networks defined by role-to-role connectivity profiles. , 2007, Nature physics.

[39]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[40]  K. McGraw,et al.  Forming inferences about some intraclass correlation coefficients. , 1996 .

[41]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[42]  Lester Melie-García,et al.  Characterizing brain anatomical connections using diffusion weighted MRI and graph theory , 2007, NeuroImage.

[43]  Clare E. Mackay,et al.  A Systematic Review of Diffusion Tensor Imaging Studies in Affective Disorders , 2009, Biological Psychiatry.

[44]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[45]  A. Song,et al.  Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging , 2009, Neuropsychology Review.

[46]  Erzsébet Ravasz,et al.  Detecting hierarchical modularity in biological networks. , 2009, Methods in molecular biology.

[47]  Jun Li,et al.  Brain Anatomical Network and Intelligence , 2009, NeuroImage.

[48]  P. Barker,et al.  Diffusion magnetic resonance imaging: Its principle and applications , 1999, The Anatomical record.

[49]  Edward T. Bullmore,et al.  Reproducibility of graph metrics of human brain functional networks , 2009, NeuroImage.

[50]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[51]  M P Young,et al.  Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  R. Meuli,et al.  Diffusion Spectrum Imaging Shows the Structural Basis of Functional Cerebellar Circuits in the Human Cerebellum In Vivo , 2009, PloS one.

[53]  H. Spencer The structure of the nervous system. , 1870 .

[54]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[55]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[56]  John M Lachin,et al.  The role of measurement reliability in clinical trials , 2004, Clinical trials.

[57]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[58]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[59]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[60]  Kathleen M. Carley,et al.  The interaction of size and density with graph-level indices , 1999, Soc. Networks.

[61]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[62]  Marcus Kaiser,et al.  Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems , 2006, PLoS Comput. Biol..

[63]  Olaf Sporns,et al.  Can structure predict function in the human brain? , 2010, NeuroImage.

[64]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[65]  O. Sporns,et al.  Dynamical consequences of lesions in cortical networks , 2008, Human brain mapping.

[66]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[67]  Yong Liu,et al.  Altered Anatomical Network in Early Blindness Revealed by Diffusion Tensor Tractography , 2009, PloS one.

[68]  Anthony J. Sherbondy,et al.  ConTrack: finding the most likely pathways between brain regions using diffusion tractography. , 2008, Journal of vision.

[69]  C. Hilgetag,et al.  Uniformity, specificity and variability of corticocortical connectivity. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[70]  A. Barkovich,et al.  Variability of Homotopic and Heterotopic Callosal Connectivity in Partial Agenesis of the Corpus Callosum: A 3T Diffusion Tensor Imaging and Q-Ball Tractography Study , 2008, American Journal of Neuroradiology.

[71]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[72]  Shuzo Sakata,et al.  Local design principles of mammalian cortical networks , 2005, Neuroscience Research.

[73]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[74]  Terry L. Jernigan,et al.  Longitudinal characterization of white matter maturation during adolescence , 2010, Brain Research.

[75]  Alan C. Evans,et al.  Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. , 2009, Cerebral cortex.

[76]  K. Lim,et al.  Diffusion Tensor Imaging in Psychiatric Disorders , 2008, Topics in magnetic resonance imaging : TMRI.

[77]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[79]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[81]  Kerstin Pannek,et al.  Comparative mouse brain tractography of diffusion magnetic resonance imaging , 2010, NeuroImage.

[82]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[83]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[84]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[85]  Marco Rovaris,et al.  DTI Parameter Optimisation for Acquisition at 1.5T: SNR Analysis and Clinical Application , 2010, Comput. Intell. Neurosci..

[86]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[87]  P. Grant,et al.  Tract-Based Analysis of Callosal, Projection, and Association Pathways in Pediatric Patients with Multiple Sclerosis: A Preliminary Study , 2010, American Journal of Neuroradiology.

[88]  Wang Zhan,et al.  In-vivo investigation of the human cingulum bundle using the optimization of MR diffusion spectrum imaging. , 2010, European journal of radiology.

[89]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[90]  Lester Melie-García,et al.  Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory , 2008, NeuroImage.

[91]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[92]  Danielle S Bassett,et al.  Cognitive fitness of cost-efficient brain functional networks , 2009, Proceedings of the National Academy of Sciences.

[93]  C. J. Honeya,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009 .

[94]  Karen E. Campbell,et al.  SOCIAL RESOURCES AND SOCIOECONOMIC STATUS , 1986 .

[95]  Changsong Zhou,et al.  Hierarchical organization unveiled by functional connectivity in complex brain networks. , 2006, Physical review letters.

[96]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[97]  Edward T. Bullmore,et al.  Neuroinformatics Original Research Article , 2022 .

[98]  Y. Assaf,et al.  Diffusion Tensor Imaging (DTI)-based White Matter Mapping in Brain Research: A Review , 2007, Journal of Molecular Neuroscience.

[99]  M. Solaiyappan,et al.  In vivo three‐dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging , 1999, Magnetic resonance in medicine.

[100]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[101]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[102]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[103]  Abbas F. Sadikot,et al.  Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques , 2005, NeuroImage.

[104]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[105]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[106]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[107]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[108]  M P Young,et al.  Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[109]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[110]  Dirk Stroobandt,et al.  The interpretation and application of Rent's rule , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[111]  Simon W. Moore,et al.  Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits , 2010, PLoS Comput. Biol..

[112]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Timothy Edward John Behrens,et al.  Training induces changes in white matter architecture , 2009, Nature Neuroscience.

[114]  D. Garlaschelli The weighted random graph model , 2009, 0902.0897.

[115]  P. Bandettini,et al.  What's New in Neuroimaging Methods? , 2009, Annals of the New York Academy of Sciences.

[116]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[117]  E. Bullmore,et al.  Functional Connectivity and Brain Networks in Schizophrenia , 2010, The Journal of Neuroscience.

[118]  E. Bullmore,et al.  Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia , 2008, The Journal of Neuroscience.

[119]  K. Lim,et al.  Advances in white matter imaging: A review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging , 2006, Neuroscience & Biobehavioral Reviews.

[120]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[121]  Gareth J. Barker,et al.  Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging , 2002, IEEE Transactions on Medical Imaging.

[122]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[123]  Guido Gerig,et al.  Diffusion tensor imaging: Application to the study of the developing brain. , 2007, Journal of the American Academy of Child and Adolescent Psychiatry.

[124]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[125]  V. Wedeen,et al.  Halving imaging time of whole brain diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in EPI , 2009, Journal of magnetic resonance imaging : JMRI.

[126]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.