Distributionally Robust Monte Carlo Simulation: A Tutorial Survey

Abstract Whereas the use of traditional Monte Carlo simulation requires probability distributions for the uncertain parameters entering the system, distributionally robust Monte Carlo simulation does not. According to this new theory, instead of carrying out simulations using some rather arbitrary probability distribution such as Gaussian for the uncertain parameters, we provide a rather different prescription based on distributional robustness considerations. Motivated by manufacturing considerations, a class of distributions ℱ is specified and the results of the simulation hold for all f ∈ ℱ. This new method of Monte Carlo simulation was developed with the robustician in mind in that we begin only with bounds on the uncertain parameters and no a priori probability distribution is assumed.

[1]  Giuseppe Carlo Calafiore,et al.  Randomized algorithms for probabilistic robustness with real and complex structured uncertainty , 2000, IEEE Trans. Autom. Control..

[2]  B. Ross Barmish,et al.  A New Approach to Open Robustness Problems Based on Probabilistic Prediction Formulae , 1996 .

[3]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[4]  G. Calafiore,et al.  Uniform Sample Generation in 1PBalls for Probabilistic Robustness Analysisl , 1998 .

[5]  B. Barmish,et al.  Characterization of worst-case uncertainty geometry in the theory of probabilistic robustness , 1999 .

[6]  G. Hachtel The simplicial approximation approach to design centering , 1977 .

[7]  Robert F. Stengel,et al.  The use of random search and genetic algorithms to optimize stochastic robustness functions , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[8]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[9]  Yun Huang,et al.  Soft vs. hard bounds in probabilistic robustness analysis , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[10]  B. R. Barmish,et al.  Probabilistic enhancement of classical robustness margins: the unirectangularity concept , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[11]  B. R. Barmish,et al.  Probabilistic robustness: an RLC circuit realization of the truncation phenomenon , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[12]  Minyue Fu,et al.  Worst-case properties of the uniform distribution and randomized algorithms for robustness analysis , 1998, Math. Control. Signals Syst..

[13]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  Mathukumalli Vidyasagar,et al.  A Theory of Learning and Generalization , 1997 .

[15]  A probabilistic approach to robust control design , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[16]  Stephen W. Director,et al.  Statistical circuit design : a somewhat biased survey , 1981 .

[17]  Robert Spence,et al.  Tolerance Design of Electronic Circuits , 1997 .

[18]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[19]  Pramod P. Khargonekar,et al.  Design of computer experiments for open-loop control and robustness analysis of clutch-to-clutch shifts in automatic transmissions , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[20]  Giuseppe Carlo Calafiore,et al.  Uniform sample generation in l/sub p/ balls for probabilistic robustness analysis , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[21]  V. Kharitonov Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .

[22]  Pramod P. Khargonekar,et al.  Randomized algorithms for robust control analysis and synthesis have polynomial complexity , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[23]  B. R. Barmish,et al.  A probabilistic robustness result for a multilinearly parameterized H/sub /spl infin// norm , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[24]  R. Tempo,et al.  Radially truncated uniform distributions for probabilistic robustness of control systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[26]  B. Ross Barmish,et al.  PROCEEDINGS OF ISCAS, GENEVA, 2000 MONTE CARLO ANALYSIS OF RESISTIVE NETWORKS WITHOUT APRIORI PROBABILITY DISTRIBUTIONS , 2000 .

[27]  B. Barmish,et al.  On convexity of the probabilistic design problem for quadratic stabilizability , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[28]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[29]  Kemin Zhou,et al.  Constrained optimal synthesis and robustness analysis by randomized algorithms , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[30]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[31]  Giuseppe Carlo Calafiore,et al.  The Probabilistic Real Stability Radius , 1999 .

[32]  R. Stengel,et al.  Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems , 1991 .

[33]  H.J.A.F. Tulleken,et al.  Probabilistic robust controller design , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[34]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[35]  B. R. Barmish,et al.  Monte Carlo analysis of resistive networks without a priori probability distributions , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[36]  D. Crevier,et al.  Volume estimation by monte carlo methods , 1989 .

[37]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[38]  Robert F. Stengel,et al.  Probabilistic evaluation of control system robustness , 1995 .

[39]  Kemin Zhou,et al.  A probabilistic approach to robust control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[40]  B. Barmish,et al.  A uniformity principle for probabilistic robustness of the discrete-time linear quadratic regulator , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[41]  B. Ross Barmish,et al.  The uniform distribution: A rigorous justification for its use in robustness analysis , 1996, Math. Control. Signals Syst..

[42]  Ian R. Petersen,et al.  Minimax LQG optimal control of acoustic noise in a duct , 1999 .

[43]  Robert F. Stengel,et al.  A monte carlo approach to the analysis of control system robustness , 1993, Autom..

[44]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[45]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[46]  Graham C. Goodwin,et al.  Bias-variance trade-off issues in robust controller design using statistical confidence bounds , 1999 .

[47]  Lyle H. Ungar,et al.  A non-parametric Monte Carlo technique for controller verification , 1997, Autom..