A Survey of Local and Global Pairings on Elliptic Curves and Abelian Varieties

There are many bilinear pairings that naturally appear when one studies elliptic curves, abelian varieties, and related groups. Some of these pairings, notably the Weil and Lichtenbaum-Tate pairings, can be defined over finite fields and have important applications in cryptography. Others, such as the Neron-Tate canonical height pairing and the Cassels-Tate pairing on the Shafarevich-Tate group, are of fundamental importance in number theory and arithmetic geometry, but have seen limited use in cryptography. In this article I will present a survey of some of the pairings that are used to study elliptic curves and abelian varieties. I will attempt to show why they are natural pairings and how they fit into a wider framework.

[1]  Joe Suzuki,et al.  Elliptic Curve Discrete Logarithms and the Index Calculus , 1998, ASIACRYPT.

[2]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[3]  Kazuo Ohta,et al.  Advances in Cryptology — ASIACRYPT’98 , 2002, Lecture Notes in Computer Science.

[4]  S. Lang Fundamentals of Diophantine Geometry , 1983 .

[5]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[6]  E. Bombieri,et al.  Heights in Diophantine Geometry , 2006 .

[7]  J. Cassels,et al.  Arithmetic on Curves of Genus 1. IV. Proof of the Hauptvermutung. , 1962 .

[8]  Aggelos Kiayias,et al.  Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.

[9]  Matthew Prior,et al.  Letter from “J” , 1863, The Dental register.

[10]  J. Tate,et al.  DUALITY THEOREMS IN GALOIS COHOMOLOGY OVER NUMBER FIELDS , 2010 .

[11]  Joseph H. Silverman,et al.  The Xedni Calculus and the Elliptic Curve Discrete Logarithm Problem , 2000, Des. Codes Cryptogr..

[12]  A. Neron,et al.  Quasi-fonctions et Hauteurs sur les Varietes Abeliennes , 1965 .

[13]  Joseph H. Silverman,et al.  Diophantine Geometry: An Introduction , 2000, The Mathematical Gazette.

[14]  J. Tate,et al.  $WC$-groups over $p$-adic fields , 1958 .

[15]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[16]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1993, IEEE Trans. Inf. Theory.

[17]  James S. Milne,et al.  Arithmetic Duality Theorems , 1987 .

[18]  Antoine Joux A One Round Protocol for Tripartite Diffie-Hellman , 2000, ANTS.

[19]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[20]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[21]  S. Lang Les formes bilinéaires de Néron et Tate , 1964 .

[22]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[23]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[24]  Andreas Stein,et al.  Analysis of the Xedni Calculus Attack , 2000, Des. Codes Cryptogr..

[25]  Karl Rubin,et al.  Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication , 1987 .