Thalamocortical Angular Tuning Domains within Individual Barrels of Rat Somatosensory Cortex

In the rodent somatosensory cortex, whisker-related barrels in layer IV are morphological counterparts of functional cortical columns that extend throughout the cortical depth. We used microelectrode recordings and spike-triggered averaging of field potentials evoked by single thalamic barreloid neurons to investigate functional thalamocortical microcircuits. The function of such circuits was probed by deflecting the principal whisker of a barrel in different angular directions. We found that individual barrels contain minicolumns of neurons preferring the same deflection angle. Angular tuning domains are established by convergent inputs from thalamocortical cells with corresponding angular preferences. Processing within such domains may depend on local connectivity among vertically aligned barrel neurons.

[1]  Joshua C. Brumberg,et al.  A quantitative population model of whisker barrels: Re-examining the Wilson-Cowan equations , 1996, Journal of Computational Neuroscience.

[2]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental Brain Research.

[3]  Vernon B Mountcastle,et al.  Introduction. Computation in cortical columns. , 2003, Cerebral cortex.

[4]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[5]  H. Swadlow,et al.  Activation of a Cortical Column by a Thalamocortical Impulse , 2002, The Journal of Neuroscience.

[6]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[7]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[8]  B. Sakmann,et al.  The Excitatory Neuronal Network of Rat Layer 4 Barrel Cortex , 2000, The Journal of Neuroscience.

[9]  Amiram Grinvald,et al.  Visual cortex maps are optimized for uniform coverage , 2000, Nature Neuroscience.

[10]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[11]  H. Swadlow,et al.  The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex. , 2000, Journal of neurophysiology.

[12]  R. S. Waters,et al.  Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat , 2000, Experimental Brain Research.

[13]  A. Keller,et al.  Neonatal whisker clipping alters intracortical, but not thalamocortical projections, in rat barrel cortex , 1999, The Journal of comparative neurology.

[14]  P. Land,et al.  Experience-dependent alteration of synaptic zinc in rat somatosensory barrel cortex. , 1999, Somatosensory & motor research.

[15]  D J Simons,et al.  Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels. , 1996, Journal of neurophysiology.

[16]  Laurence Garey,et al.  The Digestive System in Mammals. Food, Form and Function. , 1995 .

[17]  S. Buffer,et al.  Barreloids in adult rat thalamus: Three‐dimensional architecture and relationship to somatosensory cortical barrels , 1995, The Journal of comparative neurology.

[18]  E. Jones,et al.  The Barrel Cortex of Rodents , 1995, Cerebral Cortex.

[19]  D J Simons,et al.  OFF response transformations in the whisker/barrel system. , 1994, Journal of neurophysiology.

[20]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[21]  D J Simons,et al.  Thalamocortical response transformations in simulated whisker barrels , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[23]  T A Woolsey,et al.  Mouse barrel cortex viewed as Dirichlet domains. , 1991, Cerebral cortex.

[24]  M. Diamond,et al.  Demonstration of discrete place‐defined columns—segregates—in the cat SI , 1990, The Journal of comparative neurology.

[25]  D. Simons,et al.  Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. , 1990, Somatosensory & motor research.

[26]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[27]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[28]  J. S. McCasland,et al.  High‐resolution 2‐deoxyglucose mapping of functional cortical columns in mouse barrel cortex , 1988, The Journal of comparative neurology.

[29]  KF Jensen,et al.  Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  D. Simons,et al.  A reliable technique for marking the location of extracellular recording sites using glass micropipettes , 1987, Neuroscience Letters.

[31]  T A Woolsey,et al.  Axonal trajectories between mouse somatosensory thalamus and cortex , 1987, The Journal of comparative neurology.

[32]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[33]  D. Simons,et al.  Cytochrome oxidase staining in the rat smI barrel cortex , 1985, The Journal of comparative neurology.

[34]  D. Simons,et al.  Morphology of Golgi‐Cox‐impregnated barrel neurons in rat SmI cortex , 1984, The Journal of comparative neurology.

[35]  T. Woolsey,et al.  Computer‐assisted analyses of barrel neuron axons and their putative synaptic contacts , 1983, The Journal of comparative neurology.

[36]  D. Simons Multi-whisker stimulation and its effects on vibrissa units in rat Sml barrel cortex , 1983, Brain Research.

[37]  J. Adams Heavy metal intensification of DAB-based HRP reaction product. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[38]  D. Simons,et al.  Functional organization in mouse barrel cortex , 1979, Brain Research.

[39]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[40]  D. Durham,et al.  Barrels and columnar cortical organization: evidence from 2-deoxyglucose (2-DG) experiments , 1977, Brain Research.

[41]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[42]  D. F. Wann,et al.  Mouse SmI cortex: qualitative and quantitative classification of golgi-impregnated barrel neurons. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Armstrong‐James The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex S1. , 1975, The Journal of physiology.

[44]  V. Mountcastle,et al.  Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. , 1959, Bulletin of the Johns Hopkins Hospital.

[45]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.