A Robust Structured Tracker Using Local Deep Features

Deep features extracted from convolutional neural networks have been recently utilized in visual tracking to obtain a generic and semantic representation of target candidates. In this paper, we propose a robust structured tracker using local deep features (STLDF). This tracker exploits the deep features of local patches inside target candidates and sparsely represents them by a set of templates in the particle filter framework. The proposed STLDF utilizes a new optimization model, which employs a group-sparsity regularization term to adopt local and spatial information of the target candidates and attain the spatial layout structure among them. To solve the optimization model, we propose an efficient and fast numerical algorithm that consists of two subproblems with the close-form solutions. Different evaluations in terms of success and precision on the benchmarks of challenging image sequences (e.g., OTB50 and OTB100) demonstrate the superior performance of the STLDF against several state-of-the-art trackers.

[1]  Gang Wang,et al.  Video Tracking Using Learned Hierarchical Features , 2015, IEEE Transactions on Image Processing.

[2]  Huchuan Lu,et al.  Visual Tracking via Probability Continuous Outlier Model , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Seunghoon Hong,et al.  Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network , 2015, ICML.

[4]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[5]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[6]  Silvio Savarese,et al.  Learning to Track at 100 FPS with Deep Regression Networks , 2016, ECCV.

[7]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Lei Zhang,et al.  Object Tracking via Dual Linear Structured SVM and Explicit Feature Map , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[10]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[15]  Xiaojun Qi,et al.  Robust Structured Multi-Task Multi-View Sparse Tracking , 2018, 2018 IEEE International Conference on Multimedia and Expo (ICME).

[16]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[17]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[18]  Tianzhu Zhang,et al.  In Defense of Sparse Tracking: Circulant Sparse Tracker , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[20]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Huchuan Lu,et al.  Visual Tracking via Coarse and Fine Structural Local Sparse Appearance Models , 2016, IEEE Transactions on Image Processing.

[22]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[23]  Changsheng Xu,et al.  Robust Structural Sparse Tracking , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[25]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[27]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[28]  Qingshan Liu,et al.  Robust Visual Tracking via Convolutional Networks Without Training , 2015, IEEE Transactions on Image Processing.

[29]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Bohyung Han,et al.  Modeling and Propagating CNNs in a Tree Structure for Visual Tracking , 2016, ArXiv.

[31]  Yiannis Demiris,et al.  Attentional Correlation Filter Network for Adaptive Visual Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Xiaojun Qi,et al.  Structured Group Local Sparse Tracker , 2019, IET Image Process..

[33]  Rynson W. H. Lau,et al.  VITAL: VIsual Tracking via Adversarial Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[38]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[39]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Zhibin Hong,et al.  Robust Multitask Multiview Tracking in Videos , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[41]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Bohyung Han,et al.  Real-Time MDNet , 2018, ECCV.

[43]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[44]  Abhinav Gupta,et al.  Transferring Rich Feature Hierarchies for Robust Visual Tracking , 2015, ArXiv.

[45]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Zhibin Hong,et al.  Tracking via Robust Multi-task Multi-view Joint Sparse Representation , 2013, 2013 IEEE International Conference on Computer Vision.

[47]  Honggang Zhang,et al.  Deep Attentive Tracking via Reciprocative Learning , 2018, NeurIPS.

[48]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[50]  Dit-Yan Yeung,et al.  Learning a Deep Compact Image Representation for Visual Tracking , 2013, NIPS.

[51]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[52]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[53]  Andrea Cavallaro,et al.  Accepted for Publication in Ieee Transactions on Image Processing Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation , 2022 .

[54]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Haibin Ling,et al.  Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms , 2013, 2013 IEEE International Conference on Computer Vision.

[57]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[58]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.