Low-speed optic-flow sensor onboard an unmanned helicopter flying outside over fields

The 6-pixel low-speed Visual Motion Sensor (VMS) inspired by insects' visual systems presented here performs local 1-D angular speed measurements ranging from 1.5°/s to 25°/s and weighs only 2.8 g. The entire optic flow processing system, including the spatial and temporal filtering stages, has been updated with respect to the original design. This new lightweight sensor was tested under free-flying outdoor conditions over various fields onboard a 80 kg unmanned helicopter called ReSSAC. The visual disturbances encountered included helicopter vibrations, uncontrolled illuminance, trees, roads, and houses. The optic flow measurements obtained were finely analyzed online and also offline, using the sensors of various kinds mounted onboard ReSSAC. The results show that the optic flow measured despite the complex disturbances encountered closely matched the approximate ground-truth optic flow.

[1]  Timothy W. McLain,et al.  Maximizing miniature aerial vehicles , 2006, IEEE Robotics & Automation Magazine.

[2]  Matthew Garratt,et al.  Biologically inspired climbing with a hexapedal robot , 2008 .

[3]  N. Franceschini,et al.  A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities , 2007, Current Biology.

[4]  Stéphane Viollet,et al.  A novel 1-gram insect based device measuring visual motion along 5 optical directions , 2011, 2011 IEEE SENSORS Proceedings.

[5]  Christopher E. Neely,et al.  Mixed-mode VLSI optic flow sensors for in-flight control of a micro air vehicle , 2000, SPIE Optics + Photonics.

[6]  Kenzo Nonami,et al.  Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles , 2009, Robotics Auton. Syst..

[7]  James Sean Humbert,et al.  Erratum to: Implementation of wide-field integration of optic flow for autonomous quadrotor navigation , 2009, Auton. Robots.

[8]  Robert E. Mahony,et al.  Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow , 2012, IEEE Transactions on Robotics.

[9]  Dario Floreano,et al.  Vision-based control of near-obstacle flight , 2009, Auton. Robots.

[10]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[11]  Shih-Chii Liu,et al.  Motion Detection Circuits for a Time-To-Travel Algorithm , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[12]  Stéphane Viollet,et al.  Biomimetic optic flow sensing applied to a lunar landing scenario , 2010, 2010 IEEE International Conference on Robotics and Automation.

[13]  Dario Floreano,et al.  optiPilot: control of take-off and landing using optic flow , 2009 .

[14]  Yoko Watanabe,et al.  Simultaneous visual target tracking and navigation in a GPS-denied environment , 2009, 2009 International Conference on Advanced Robotics.

[15]  Stéphane Viollet,et al.  Bio-inspired optical flow circuits for the visual guidance of micro air vehicles , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[16]  Patrick,et al.  The ONERA ReSSAC Unmanned Autonomous Helicopter : Visual Air-to-Ground Target Tracking in an Urban Environment , 2010 .

[17]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[18]  Gaurav S. Sukhatme,et al.  Combined optic-flow and stereo-based navigation of urban canyons for a UAV , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[20]  Alexa Riehle,et al.  Directionally Selective Motion Detection by Insect Neurons , 1989 .

[21]  Nicolas H. Franceschini,et al.  Optic flow regulation: the key to aircraft automatic guidance , 2005, Robotics Auton. Syst..

[22]  Tobi Delbrück,et al.  Direction Selective Silicon Retina that Uses Null Inhibition , 1991, NIPS.

[23]  Nicolas Franceschini,et al.  Visual Guidance Of A Mobile Robot Equipped With A Network Of Self-Motion Sensors , 1990, Other Conferences.

[24]  Ania Mitros,et al.  Visual Sensor with Resolution Enhancement by Mechanical Vibrations , 2001, Auton. Robots.

[25]  F. Ruffier,et al.  Visual motion sensing onboard a 50-g helicopter flying freely under complex VICON-lighting conditions , 2012, 2012 ICME International Conference on Complex Medical Engineering (CME).

[26]  Sophocles J. Orfanidis,et al.  Introduction to signal processing , 1995 .

[27]  J. Koenderink,et al.  Facts on optic flow , 1987, Biological Cybernetics.

[28]  Stéphane Viollet,et al.  Outdoor field performances of insect‐based visual motion sensors , 2011, J. Field Robotics.

[29]  Franck Ruffier,et al.  PILOTE AUTOMATIQUE BIOMIMETIQUE Système générique inspiré du contrôle visuomoteur des insectes pour : le décollage, le suivi de terrain, la réaction au vent et l'atterrissage automatiques d'un micro-aéronef , 2004 .

[30]  Rogelio Lozano,et al.  An adaptive vision-based autopilot for mini flying machines guidance, navigation and control , 2009, Auton. Robots.

[31]  Geoffrey L. Barrows,et al.  Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[32]  Nicolas H. Franceschini,et al.  Visually guided micro-aerial vehicle: automatic take off, terrain following, landing and wind reaction , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[33]  Nicolás Weiss,et al.  Constant-Optic-Flow Lunar Landing: Optimality and Guidance , 2011 .