Bayesian modeling of uncertainty in low-level vision

The need for error modeling, multisensor fusion, and robust algorithms is becoming increasingly recognized in computer vision. Bayesian modeling is a powerful, practical, and general framework for meeting these requirements. This article develops a Bayesian model for describing and manipulating the dense fields, such as depth maps, associated with low-level computer vision. Our model consists of three components: a prior model, a sensor model, and a posterior model. The prior model captures a priori information about the structure of the field. We construct this model using the smoothness constraints from regularization to define a Markov Random Field. The sensor model describes the behavior and noise characteristics of our measurement system. We develop a number of sensor models for both sparse and dense measurements. The posterior model combines the information from the prior and sensor models using Bayes' rule. We show how to compute optimal estimates from the posterior model and also how to compute the uncertainty (variance) in these estimates. To demonstrate the utility of our Bayesian framework, we present three examples of its application to real vision problems. The first application is the on-line extraction of depth from motion. Using a two-dimensional generalization of the Kalman filter, we develop an incremental algorithm that provides a dense on-line estimate of depth whose accuracy improves over time. In the second application, we use a Bayesian model to determine observer motion from sparse depth (range) measurements. In the third application, we use the Bayesian interpretation of regularization to choose the optimal smoothing parameter for interpolation. The uncertainty modeling techniques that we develop, and the utility of these techniques in various applications, support our claim that Bayesian modeling is a powerful and practical framework for low-level vision.

[1]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[2]  T. Boult Information-based complexity in nonlinear equations and computer vision (multivariate splines, optimal algorithms, zero-finding) , 1986 .

[3]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[4]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[5]  Olivier D. Faugeras,et al.  Building visual maps by combining noisy stereo measurements , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Richard Szeliski,et al.  Cooperative algorithms for solving random-dot stereograms , 1986 .

[7]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[8]  Demetri Terzopoulos,et al.  Symmetry-seeking models and 3D object reconstruction , 1988, International Journal of Computer Vision.

[9]  Richard Szeliski Estimating Motion From Sparse Range Data Without Correspondence , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[10]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[11]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[12]  Alberto Elfes,et al.  Sensor integration for robot navigation: Combining sonar and stereo range data in a grid-based representataion , 1987, 26th IEEE Conference on Decision and Control.

[13]  José L. Marroquín,et al.  Probabilistic solution of inverse problems , 1985 .

[14]  Richard Szeliski,et al.  An Analysis of the Elastic Net Approach to the Traveling Salesman Problem , 1989, Neural Computation.

[15]  Daphna Weinshall,et al.  The MIT vision machine , 1988 .

[16]  Tomaso Poggio,et al.  Cooperative computation of stereo disparity , 1988 .

[17]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[18]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[19]  W. Eric L. Grimson,et al.  An implementation of a computational theory of visual surface interpolation , 1983, Comput. Vis. Graph. Image Process..

[20]  M. Hebert,et al.  The Representation, Recognition, and Positioning of 3-D Shapes from Range Data , 1987 .

[21]  H. F. Durrant-White Consistent integration and propagation of disparate sensor observations , 1987 .

[22]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[24]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[25]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[26]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Joachim Heel Dynamic motion vision , 1990, Robotics Auton. Syst..

[28]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  J. Marroquín Surface Reconstruction Preserving Discontinuities , 1984 .

[30]  Robert C. Bolles,et al.  Generalizing Epipolar-Plane Image Analysis on the spatiotemporal surface , 2004, International Journal of Computer Vision.

[31]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[32]  Takeo Kanade,et al.  Three-Dimensional Machine Vision , 1987 .

[33]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[34]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[35]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[36]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[37]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[39]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[40]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[41]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[42]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[43]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[44]  Rae A. Earnshaw,et al.  Fundamental Algorithms for Computer Graphics , 1986, NATO ASI Series.

[45]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[46]  Allen R. Hanson,et al.  Computer Vision Systems , 1978 .

[47]  Ronald A. Rensink On the visual discrimination of self-similar random textures , 1986 .

[48]  Robert C. Bolles,et al.  Epipolar-plane image analysis: An approach to determining structure from motion , 1987, International Journal of Computer Vision.

[49]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[50]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[51]  Demetri Terzopoulos,et al.  Signal matching through scale space , 1986, International Journal of Computer Vision.

[52]  Richard Durbin,et al.  An analogue approach to the travelling salesman problem using an elastic net method , 1987, Nature.

[53]  横矢 直和,et al.  Quadtrees and Pyramids for Pattern Recognition and Image Processing , 1981 .

[54]  J. P. Christ Shape estimation and object recognition using spatial probability distributions , 1987 .

[55]  Berthold K. P. Horn Understanding Image Intensities , 1977, Artif. Intell..

[56]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[57]  Narendra Ahuja,et al.  SURFACES FROM STEREO. , 1986 .

[58]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[59]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[60]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[61]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[62]  Eric Dubois,et al.  Multigrid Bayesian Estimation Of Image Motion Using Stochastic Relaxation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[63]  Liang-Hua Chen,et al.  An integrated approach to stereo matching, surface reconstruction and depth segmentation using consistent smoothness assumptions , 1988 .

[64]  R. Voss Random Fractal Forgeries , 1985 .

[65]  李幼升,et al.  Ph , 1989 .

[66]  Richard Szeliski,et al.  From splines to fractals , 1989, SIGGRAPH '89.

[67]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[69]  Richard Szeliski,et al.  Regularization Uses Fractal Priors , 1987, AAAI.

[70]  Hugh F. Durrant-Whyte,et al.  Consistent Integration and Propagation of Disparate Sensor Observations , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[71]  Richard Szeliski,et al.  Fast shape from shading , 1990, CVGIP Image Underst..

[72]  Demetri Terzopoulos,et al.  Matching deformable models to images: Direct and iterative solutions , 1980 .

[73]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[74]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[75]  G. Wahba Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .

[76]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[78]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Richard Szeliski,et al.  Fast Surface Interpolation Using Hierarchical Basis Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[80]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[81]  T. Poggio,et al.  Visual Integration and Detection of Discontinuities: The Key Role of Intensity Edges , 1987 .

[82]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[83]  Stephen T. Barnard,et al.  Stochastic stereo matching over scale , 1989, International Journal of Computer Vision.

[84]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[85]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[86]  David J. Heeger,et al.  Optical flow from spatialtemporal filters , 1987 .

[87]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[89]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[90]  Geoffrey E. Hinton Relaxation and its role in vision , 1977 .

[91]  D. Geiger,et al.  Mean field theory for surface reconstruction , 1989 .

[92]  Patrick Rives,et al.  Recursive Estimation of 3D Features Using Optical Flow and Camera Motion , 1986, Annual Meeting of the IEEE Industry Applications Society.

[93]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[94]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[95]  Manfred H. Hueckel An Operator Which Locates Edges in Digitized Pictures , 1971, J. ACM.

[96]  Alan L. Yuille,et al.  A regularized solution to edge detection , 1985, J. Complex..

[97]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[98]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[99]  Michael J. Brooks,et al.  The variational approach to shape from shading , 1986, Comput. Vis. Graph. Image Process..

[100]  David Marr,et al.  Representing Visual Information , 1977 .

[101]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[102]  Richard M. Stern,et al.  Fast Computation of the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[104]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[105]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .