An Interval Approach for Stability Analysis: Application to Sailboat Robotics

This paper proposes an interval-based method for the validation of reliable and robust navigation rules for mobile robots. The main idea is to show that for all feasible perturbations, there exists a safe subset of the state space such that the system cannot escape. The methodology is illustrated on the line-following problem of a sailboat and then validated on an actual experiment where an actual sailboat robot, which is named Vaimos, sails autonomously from Brest to Douarnenez (i.e., more than 100 km).

[1]  David E. Orin,et al.  Control of Force Distribution in Robotic Mechanisms Containing Closed Kinematic Chains , 1981 .

[2]  R. Zapata,et al.  Motion planning of cooperative nonholonomic mobile manipulators , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[3]  Hassan K. Khalil,et al.  Nonlinear Systems Third Edition , 2008 .

[4]  E. Cruck,et al.  Estimation of Basins of Attraction for Uncertain Systems with Affine and Lipschitz Dynamics , 2001 .

[5]  S. Agrawal,et al.  Differentially Flat Design of Bipeds Ensuring Limit Cycles , 2009 .

[6]  Josep Vehí,et al.  Guaranteed set-point computation with application to the control of a sailboat , 2010 .

[7]  Philippe Bonnifait,et al.  High Integrity GNSS Location Zone Characterization using Interval Analysis , 2009 .

[8]  Colin Sauze,et al.  An Autonomous Sailing Robot for Ocean Observation , 2006 .

[9]  Vijay Kumar,et al.  Multiple cooperating mobile manipulators , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  Xavier Moreau,et al.  Stability and resonance conditions of elementary fractional transfer functions , 2011, Autom..

[11]  Luc Jaulin,et al.  Contractor programming , 2009, Artif. Intell..

[12]  J Luc Suivi de route pour un robot voilier , 2012 .

[13]  P. Olver Nonlinear Systems , 2013 .

[14]  Frédéric Plumet,et al.  Reactive path planning for autonomous sailboat , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[15]  Kostas J. Kyriakopoulos,et al.  Nonholonomic navigation and control of cooperating mobile manipulators , 2003, IEEE Trans. Robotics Autom..

[16]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[17]  Lydia E. Kavraki,et al.  Randomized path planning for linkages with closed kinematic chains , 2001, IEEE Trans. Robotics Autom..

[18]  Vivek Sangwan,et al.  Differential Flatness of a Class of $n$-DOF Planar Manipulators Driven by 1 or 2 Actuators , 2010, IEEE Transactions on Automatic Control.

[19]  W. Tucker The Lorenz attractor exists , 1999 .

[20]  John J. Murray,et al.  Dynamic modeling of closed-chain robotic manipulators and implications for trajectory control , 1989, IEEE Trans. Robotics Autom..

[21]  Special issue on “recent advances in power system control” for international journal of control, automation, and systems , 2004 .

[22]  Alexandre Goldsztejn,et al.  Tinkerbell Is Chaotic , 2011, SIAM J. Appl. Dyn. Syst..

[23]  Y. Candau,et al.  Set membership state and parameter estimation for systems described by nonlinear differential equations , 2004, Autom..

[24]  Eric Walter,et al.  Guaranteed tuning, with application to robust control and motion planning , 1996, Autom..

[25]  P. Saint-Pierre Approximation of the viability kernel , 1994 .

[26]  L. Jaulin,et al.  Capture basin approximation using interval analysis , 2011 .

[27]  Marc Quincampoix,et al.  Differential inclusions and target problems , 1992 .

[28]  C. Berge Topological Spaces: including a treatment of multi-valued functions , 2010 .

[29]  S. Veres,et al.  Application of ellipsoidal estimation to satellite control design , 2005 .

[30]  S. M. Veres,et al.  Application of ellipsoidal estimation to satellite control , 2005 .

[31]  Jian Wan Computationally reliable approaches of contractive MPC for discrete-time systems , 2007 .

[32]  Dominique Meizel,et al.  Set inversion for x -algorithms, with applications to guaranteed robot localization , 2000 .

[33]  Dominique Bonvin,et al.  Quotient method for controlling the acrobot , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[34]  Yoshihiko Nakamura,et al.  Dynamics computation of closed-link robot mechanisms with nonredundant and redundant actuators , 1989, IEEE Trans. Robotics Autom..

[35]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[36]  Mitul Saha,et al.  Manipulation Planning for Deformable Linear Objects , 2007, IEEE Transactions on Robotics.

[37]  Fahed Abdallah,et al.  Box particle filtering for nonlinear state estimation using interval analysis , 2008, Autom..

[38]  Yuan F. Zheng,et al.  Computation of input generalized forces for robots with closed kinematic chain mechanisms , 1985, IEEE J. Robotics Autom..

[39]  Raazesh Sainudiin,et al.  Machine Interval Experiments , 2010 .