Set-membership identification and fault detection using a bayesian framework

This paper deals with the problem of set-membership identification and fault detection using a Bayesian framework. The paper presents how the set-membership model estimation problem can be reformulated from a Bayesian viewpoint in order to determine the feasible parameter set and, in a posterior fault detection stage, to check the consistency between data and the model. The paper shows that, assuming uniform distributed measurement noise and flat model prior probability distribution, the Bayesian approach leads to the same feasible parameter set than the set-membership strips technique and, additionally, can deal with models nonlinear in the parameters. The procedure and results are illustrated by means of the application to a quadruple tank process.

[1]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[2]  C. Robert,et al.  Understanding Computational Bayesian Statistics , 2009 .

[3]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[4]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[5]  Mario Milanese,et al.  Optimality, approximation, and complexity in set membership H∞ identification , 2002, IEEE Trans. Autom. Control..

[6]  Ali Alawi,et al.  Real Time Fault Diagnosis , 1997 .

[7]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[8]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[9]  G. Goodwin,et al.  Rapprochement between bounded‐error and stochastic estimation theory , 1995 .

[10]  Brett Ninness,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010, Autom..

[11]  Vasso Reppa,et al.  Fault detection and diagnosis based on parameter set estimation , 2011 .

[12]  Václav Peterka,et al.  Bayesian system identification , 1979, Autom..

[13]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[14]  H. Sorenson Least-squares estimation: from Gauss to Kalman , 1970, IEEE Spectrum.

[15]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[16]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[17]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[18]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[19]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[20]  Graham C. Goodwin,et al.  Non-stationary stochastic embedding for transfer function estimation , 1999, Autom..

[21]  Luc Jaulin,et al.  Probabilistic Set-membership Approach for Robust Regression , 2010 .

[22]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[23]  Andrea Garulli,et al.  On Model Error Modeling in Set Membership Identification , 2000 .

[24]  Mario Milanese,et al.  Hinfinity set membership identification: A survey , 2005, Autom..

[25]  Vicenç Puig,et al.  Nonlinear set-membership identification and fault detection using a Bayesian framework: Application to the wind turbine benchmark , 2013, 52nd IEEE Conference on Decision and Control.

[26]  NinnessBrett,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010 .

[27]  Vicenç Puig,et al.  Identification for passive robust fault detection using zonotope‐based set‐membership approaches , 2011 .

[28]  Sebastian Thrun,et al.  Real-time fault diagnosis [robot fault diagnosis] , 2004, IEEE Robotics & Automation Magazine.

[29]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[30]  Jordi Saludes,et al.  Robust fault detection using polytope-based set-membership consistency test , 2009, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[31]  Xiang Li,et al.  Probabilistically Constrained Linear Programs and Risk-Adjusted Controller Design , 2005, SIAM J. Optim..

[32]  Giuseppe Carlo Calafiore,et al.  Interval predictor models: Identification and reliability , 2009, Autom..

[33]  Vicenç Puig,et al.  Robust fault detection using zonotope‐based set‐membership consistency test , 2009 .