Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations

The integration of direct bottom-up inputs with contextual information is a core feature of neocortical circuits. In area V1, neurons may reduce their firing rates when their receptive field input can be predicted by spatial context. Gamma-synchronized (30–80 Hz) firing may provide a complementary signal to rates, reflecting stronger synchronization between neuronal populations receiving mutually predictable inputs. We show that large uniform surfaces, which have high spatial predictability, strongly suppressed firing yet induced prominent gamma synchronization in macaque V1, particularly when they were colored. Yet, chromatic mismatches between center and surround, breaking predictability, strongly reduced gamma synchronization while increasing firing rates. Differences between responses to different colors, including strong gamma-responses to red, arose from stimulus adaptation to a full-screen background, suggesting prominent differences in adaptation between M- and L-cone signaling pathways. Thus, synchrony signaled whether RF inputs were predicted from spatial context, while firing rates increased when stimuli were unpredicted from context.

[1]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[2]  Sunita Mandon,et al.  Switching Neuronal Inputs by Differential Modulations of Gamma-Band Phase-Coherence , 2012, The Journal of Neuroscience.

[3]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[4]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[5]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[6]  Luc H. Arnal,et al.  Cortical oscillations and sensory predictions , 2012, Trends in Cognitive Sciences.

[7]  Hamutal Slovin,et al.  A Contrast and Surface Code Explains Complex Responses to Black and White Stimuli in V1 , 2014, The Journal of Neuroscience.

[8]  Peter Dayan,et al.  Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics , 2012, PLoS Comput. Biol..

[9]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[10]  Dana H. Ballard,et al.  Cortical spike multiplexing using gamma frequency latencies , 2018, bioRxiv.

[11]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[12]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[13]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[14]  Hamutal Slovin,et al.  Representation of Color Surfaces in V1: Edge Enhancement and Unfilled Holes , 2015, The Journal of Neuroscience.

[15]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[16]  R. Shapley,et al.  “Black” Responses Dominate Macaque Primary Visual Cortex V1 , 2009, The Journal of Neuroscience.

[17]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[18]  Yoko Mizokami,et al.  Seasonal variations in the color statistics of natural images , 2007, Network.

[19]  I. Fried,et al.  Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI Is Related to Interneuronal Correlations , 2007, Current Biology.

[20]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[21]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[22]  René Scheeringa,et al.  The relationship between oscillatory EEG activity and the laminar-specific BOLD signal , 2016, Proceedings of the National Academy of Sciences.

[23]  R. Eckhorn,et al.  Contour decouples gamma activity across texture representation in monkey striate cortex. , 2000, Cerebral cortex.

[24]  Christopher J. Aura,et al.  Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey , 2008, Nature Neuroscience.

[25]  Martin Vinck,et al.  Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4 , 2013, Neuron.

[26]  T. Sejnowski,et al.  Representation of Color Stimuli in Awake Macaque Primary Visual Cortex , 2003, Neuron.

[27]  Bijan Pesaran,et al.  Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation , 2018, Nature Neuroscience.

[28]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[29]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[30]  Dana H. Ballard,et al.  Dual Roles for Spike Signaling in Cortical Neural Populations , 2011, Front. Comput. Neurosci..

[31]  G. Ermentrout,et al.  Gamma rhythms and beta rhythms have different synchronization properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Martin Vinck,et al.  Gamma-Band Synchronization and Information Transmission , 2013 .

[33]  T. Sejnowski,et al.  Network Oscillations: Emerging Computational Principles , 2006, The Journal of Neuroscience.

[34]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[35]  Robert Oostenveld,et al.  Visual Cortical Gamma-Band Activity During Free Viewing of Natural Images , 2013, Cerebral cortex.

[36]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[37]  W. Singer,et al.  Synchrony Makes Neurons Fire in Sequence, and Stimulus Properties Determine Who Is Ahead , 2011, The Journal of Neuroscience.

[38]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[39]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[40]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[41]  E. Fetz,et al.  Decoupling the Cortical Power Spectrum Reveals Real-Time Representation of Individual Finger Movements in Humans , 2009, The Journal of Neuroscience.

[42]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[43]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[44]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[45]  E H Land,et al.  COLOR VISION AND THE NATURAL IMAGE PART II. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[46]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[47]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[48]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[49]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[50]  P. Fries,et al.  Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching , 2013, Neuron.

[51]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[52]  A. Angelucci,et al.  Circuits and Mechanisms for Surround Modulation in Visual Cortex. , 2017, Annual review of neuroscience.

[53]  C. Gilbert,et al.  Interactions between feedback and lateral connections in the primary visual cortex , 2017, Proceedings of the National Academy of Sciences.

[54]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[55]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[56]  Harvey A Swadlow,et al.  Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1. , 2015, Cerebral cortex.

[57]  Louise S. Delicato,et al.  Stimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the blood oxygen level-dependent signal in macaque primary visual cortex , 2011, The European journal of neuroscience.

[58]  P. Lennie,et al.  Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque , 2008, The Journal of Neuroscience.

[59]  Jessica A. Cardin,et al.  Stimulus-dependent gamma (30-50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex. , 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[61]  C. Luzzatti,et al.  Phonological rehabilitation in acquired aphasia , 2015 .

[62]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[63]  Henry J. Alitto,et al.  Simultaneous Recordings from the Primary Visual Cortex and Lateral Geniculate Nucleus Reveal Rhythmic Interactions and a Cortical Source for Gamma-Band Oscillations , 2014, The Journal of Neuroscience.

[64]  A. Little,et al.  Females Pay Attention to Female Secondary Sexual Color: An Experimental Study in Macaca mulatta , 2007, International Journal of Primatology.

[65]  R Eckhorn,et al.  Inhibition of sustained gamma oscillations (35-80 Hz) by fast transient responses in cat visual cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[67]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[68]  Eberhart Zrenner,et al.  Asymmetries in the time-course of chromatic adaptation and the significance of contrast , 2000, Vision Research.

[69]  Wolf Singer,et al.  Neuronal oscillations: unavoidable and useful? , 2018, The European journal of neuroscience.

[70]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[71]  A. Kohn,et al.  Gamma and the Coordination of Spiking Activity in Early Visual Cortex , 2013, Neuron.

[72]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[73]  Rodrigo F. Salazar,et al.  Responses to natural scenes in cat V1. , 2003, Journal of neurophysiology.

[74]  H. Vaughan,et al.  Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials , 1980, Journal of Neuroscience Methods.

[75]  Zhaoping Li A saliency map in primary visual cortex , 2002, Trends in Cognitive Sciences.

[76]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[77]  Peter De Weerd,et al.  Parametric variation of gamma frequency and power with luminance contrast: A comparative study of human MEG and monkey LFP and spike responses , 2015, NeuroImage.

[78]  W. Singer,et al.  Gamma or no gamma, that is the question , 2014, Trends in Cognitive Sciences.

[79]  T. Sejnowski,et al.  Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models , 2000, The Journal of Neuroscience.

[80]  Louise S. Delicato,et al.  Attention Reduces Stimulus-Driven Gamma Frequency Oscillations and Spike Field Coherence in V1 , 2010, Neuron.

[81]  G Westheimer,et al.  Dynamics of spatial summation in primary visual cortex of alert monkeys. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Peng Wang,et al.  An LCD Monitor with Sufficiently Precise Timing for Research in Vision , 2011, Front. Hum. Neurosci..

[83]  Pascal Fries,et al.  Gamma Synchronization between V1 and V4 Improves Behavioral Performance , 2018, Neuron.

[84]  Wulfram Gerstner,et al.  Extracting Oscillations: Neuronal Coincidence Detection with Noisy Periodic Spike Input , 1998, Neural Computation.

[85]  M. Abeles Role of the cortical neuron: integrator or coincidence detector? , 1982, Israel journal of medical sciences.

[86]  Ralf Engbert,et al.  Microsaccades uncover the orientation of covert attention , 2003, Vision Research.

[87]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[89]  R. Desimone,et al.  Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4 , 2013, Neuron.

[90]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[91]  O. Schwartz,et al.  Flexible Gating of Contextual Influences in Natural Vision , 2015, Nature Neuroscience.

[92]  Khalid Hamandi,et al.  The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size , 2013, NeuroImage.

[93]  G. Buzsáki Rhythms of the brain , 2006 .

[94]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[95]  S. Engel,et al.  Color opponent neurons in V1: a review and model reconciling results from imaging and single-unit recording. , 2002, Journal of vision.

[96]  Yonghong Chen,et al.  Top-Down Cortical Influences in Visual Expectation , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[97]  Fred Wolf,et al.  Flexible information routing by transient synchrony , 2017, Nature Neuroscience.

[98]  M. Chalk,et al.  Neural oscillations as a signature of efficient coding in the presence of synaptic delays , 2015, bioRxiv.

[99]  Hong Zhou,et al.  The coding of uniform colour figures in monkey visual cortex , 2003, The Journal of physiology.

[100]  Kenneth L. Chiou,et al.  Trichromacy increases fruit intake rates of wild capuchins (Cebus capucinus imitator) , 2017, Proceedings of the National Academy of Sciences.

[101]  P De Weerd,et al.  Areas V1 and V2 show microsaccade‐related 3–4‐Hz covariation in gamma power and frequency , 2016, The European journal of neuroscience.

[102]  P. Lennie,et al.  The machinery of colour vision , 2007, Nature Reviews Neuroscience.

[103]  Michael W. Spratling Predictive Coding as a Model of Response Properties in Cortical Area V1 , 2010, The Journal of Neuroscience.

[104]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[105]  Arne D. Ekstrom,et al.  How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation , 2010, Brain Research Reviews.

[106]  M. A. Smith,et al.  Stimulus Selectivity and Spatial Coherence of Gamma Components of the Local Field Potential , 2011, The Journal of Neuroscience.

[107]  R. Quian Quiroga Principles of neural coding. , 2011, Current biology : CB.

[108]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[109]  Adam P. Morris,et al.  The (un)suitability of modern liquid crystal displays (LCDs) for vision research , 2015, Front. Psychol..

[110]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[111]  E. Maris,et al.  Prior Expectation Mediates Neural Adaptation to Repeated Sounds in the Auditory Cortex: An MEG Study , 2011, The Journal of Neuroscience.

[112]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[113]  Nikolas Offenhauser,et al.  Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum , 2004, The Journal of physiology.

[114]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[115]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[116]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[117]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[118]  Ulf Knoblich,et al.  What do We Gain from Gamma? Local Dynamic Gain Modulation Drives Enhanced Efficacy and Efficiency of Signal Transmission , 2010, Front. Hum. Neurosci..

[119]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[120]  M. Livingstone Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. , 1996, Journal of neurophysiology.

[121]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[122]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[123]  David A. Leopold,et al.  Motion-Sensitive Responses in Visual Area V4 in the Absence of Primary Visual Cortex , 2013, The Journal of Neuroscience.

[124]  R. Shapley,et al.  Generation of Black-Dominant Responses in V1 Cortex , 2010, The Journal of Neuroscience.

[125]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[126]  Nancy Kopell,et al.  Gamma Oscillations and Stimulus Selection , 2008, Neural Computation.

[127]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[128]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Robert Shapley,et al.  Neural mechanisms for color perception in the primary visual cortex , 2002, Current Opinion in Neurobiology.

[130]  R. Shapley,et al.  The Orientation Selectivity of Color-Responsive Neurons in Macaque V1 , 2008, The Journal of Neuroscience.

[131]  Pieter R. Roelfsema,et al.  Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation , 2013, Current Biology.

[132]  R. Simon,et al.  Controlling the number of false discoveries: application to high-dimensional genomic data , 2004 .

[133]  Richard Coppola,et al.  Top-Down Beta Oscillatory Signaling Conveys Behavioral Context to Primary Visual Cortex , 2016, bioRxiv.

[134]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[135]  A. Kohn,et al.  No Consistent Relationship between Gamma Power and Peak Frequency in Macaque Primary Visual Cortex , 2013, The Journal of Neuroscience.

[136]  Laurie R Santos,et al.  Recognition and categorization of biologically significant objects by rhesus monkeys (Macaca mulatta): the domain of food , 2001, Cognition.

[137]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[138]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[139]  F. D. Lange,et al.  How Do Expectations Shape Perception? , 2018, Trends in Cognitive Sciences.

[140]  A. Little,et al.  Selective attention toward female secondary sexual color in male rhesus macaques , 2006, American journal of primatology.

[141]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[142]  J. Krauskopf,et al.  Cone Contrast and Opponent Modulation Color Spaces 565 ( a ) , 2022 .

[143]  Karl R Gegenfurtner,et al.  Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. , 2013, Journal of vision.

[144]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[145]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[146]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[147]  K. D. De Valois,et al.  Contribution of S opponent cells to color appearance. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[148]  Robert T. Knight,et al.  Parameterizing neural power spectra , 2018, bioRxiv.

[149]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[150]  Martin Vinck,et al.  More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions , 2016, Front. Syst. Neurosci..

[151]  Supratim Ray,et al.  Long-wavelength (reddish) hues induce unusually large gamma oscillations in the primate primary visual cortex , 2018, Proceedings of the National Academy of Sciences.

[152]  T. Sejnowski,et al.  Cortical gamma band synchronization through somatostatin interneurons , 2017, Nature Neuroscience.

[153]  T. Sejnowski,et al.  Cortical oscillations arise from contextual interactions that regulate sparse coding , 2014, Proceedings of the National Academy of Sciences.

[154]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[155]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[156]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[157]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[158]  F. I. Hárosi Cynomolgus and rhesus monkey visual pigments. Application of Fourier transform smoothing and statistical techniques to the determination of spectral parameters , 1987, The Journal of general physiology.

[159]  Richard Coppola,et al.  Top-down beta oscillatory signaling conveys behavioral context in early visual cortex , 2018, Scientific Reports.

[160]  Luc H. Arnal,et al.  Transitions in neural oscillations reflect prediction errors generated in audiovisual speech , 2011, Nature Neuroscience.

[161]  Martin Vinck,et al.  The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization , 2010, NeuroImage.

[162]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[163]  J. Bullier,et al.  Cortical mapping of gamma oscillations in areas V1 and V4 of the macaque monkey , 2001, Visual Neuroscience.

[164]  Dimitri M. Kullmann,et al.  Oscillatory multiplexing of population codes for selective communication in the mammalian brain , 2014, Nature Reviews Neuroscience.

[165]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .

[166]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[167]  Cyriel M. A. Pennartz,et al.  Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice , 2016, PLoS biology.

[168]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[169]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[170]  Michael D'Zmura,et al.  Color in visual search , 1991, Vision Research.

[171]  W. Singer,et al.  Hemodynamic Signals Correlate Tightly with Synchronized Gamma Oscillations , 2005, Science.

[172]  Dimitri M. Kullmann,et al.  Oscillations and Filtering Networks Support Flexible Routing of Information , 2010, Neuron.

[173]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[174]  R. Shapley,et al.  Color in the Cortex: single- and double-opponent cells , 2011, Vision Research.

[175]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Inter‐Columnar Interaction as Determined by Cross‐Correlation Analysis , 1990, The European journal of neuroscience.

[176]  Jessica A. Cardin,et al.  Stimulus-Dependent γ (30-50 Hz) Oscillations in Simple and Complex Fast Rhythmic Bursting Cells in Primary Visual Cortex , 2005, The Journal of Neuroscience.

[177]  Gordon Pipa,et al.  Cortical Spike Synchrony as a Measure of Input Familiarity , 2017, Neural Computation.

[178]  Ned T. Sahin,et al.  Dynamic circuit motifs underlying rhythmic gain control, gating and integration , 2014, Nature Neuroscience.

[179]  M. Bowler,et al.  Highly polymorphic colour vision in a New World monkey with red facial skin, the bald uakari (Cacajao calvus) , 2016, Proceedings of the Royal Society B: Biological Sciences.

[180]  C. Koch,et al.  Synaptic background activity influences spatiotemporal integration in single pyramidal cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[181]  Marius Usher,et al.  The Effect of Synchronized Inputs at the Single Neuron Level , 1994, Neural Computation.

[182]  W. Singer,et al.  Precisely Synchronized Oscillatory Firing Patterns Require Electroencephalographic Activation , 1999, The Journal of Neuroscience.

[183]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[184]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[185]  Christopher J. Rozell,et al.  Visual Nonclassical Receptive Field Effects Emerge from Sparse Coding in a Dynamical System , 2013, PLoS Comput. Biol..