Rate-distortion in closed-loop LTI systems

We consider a networked LTI system subject to an average data-rate constraint in the feedback path. We provide upper bounds to the minimal source coding rate required to achieve mean square stability and a desired level of performance. In the quadratic Gaussian case, an almost complete rate-distortion characterization is presented.

[1]  Karl Henrik Johansson,et al.  Iterative Encoder-Controller Design for Feedback Control Over Noisy Channels , 2011, IEEE Transactions on Automatic Control.

[2]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[3]  James L. Massey,et al.  Conservation of mutual and directed information , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[4]  Minyue Fu,et al.  Lack of Separation Principle for Quantized Linear Quadratic Gaussian Control , 2012, IEEE Transactions on Automatic Control.

[5]  Milan S. Derpich,et al.  Improved Upper Bounds to the Causal Quadratic Rate-Distortion Function for Gaussian Stationary Sources , 2012, IEEE Transactions on Information Theory.

[6]  Milan S. Derpich,et al.  A Framework for Control System Design Subject to Average Data-Rate Constraints , 2011, IEEE Transactions on Automatic Control.

[7]  Massimo Franceschetti,et al.  Stabilization Over Markov Feedback Channels: The General Case , 2013, IEEE Transactions on Automatic Control.

[8]  Graham C. Goodwin,et al.  Control system design subject to SNR constraints , 2010, Autom..

[9]  Demosthenis Teneketzis,et al.  Optimal Performance of Networked Control Systems with Nonclassical Information Structures , 2009, SIAM J. Control. Optim..

[10]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[11]  Erik Johannesson,et al.  Control and Communication with Signal-to-Noise Ratio Constraints , 2011 .

[12]  Milan S. Derpich,et al.  On the Minimal Average Data-Rate that Guarantees a Given Closed Loop Performance Level , 2010 .

[13]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[14]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..