fMRI bold signal analysis using a novel nonparametric statistical method.

We present in this article a novel analytical method that enables the application of nonparametric rank-order statistics to fMRI data analysis, since it takes the omnipresent serial correlations (temporal autocorrelations) properly into account. Comparative simulations, using the common General Linear Model and the permutation test, confirm the validity and usefulness of our approach. Our simulations, which are performed with both synthetic and real fMRI data, show that our method requires significantly less computation time than permutation-based methods, while offering the same order of robustness and returning more information about the evoked response when combined with/compared to the results obtained with the common General Lineal Model approach.

[1]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[2]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[3]  Danilo P. Mandic,et al.  Signal nonlinearity in fMRI: a comparison between BOLD and MION , 2003, IEEE Transactions on Medical Imaging.

[4]  A. Grinvald,et al.  Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Karl J. Friston,et al.  Comparing Functional (PET) Images: The Assessment of Significant Change , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  Olivier D. Faugeras,et al.  Variational Methods for Multimodal Image Matching , 2002, International Journal of Computer Vision.

[7]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[8]  D. Cochrane,et al.  Application of Least Squares Regression to Relationships Containing Auto-Correlated Error Terms , 1949 .

[9]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[10]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[11]  Marc M. Van Hulle,et al.  Optimal spatial regularisation of autocorrelation estimates in fMRI analysis , 2004, NeuroImage.

[12]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[13]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[14]  L. K. Hansen,et al.  Plurality and Resemblance in fMRI Data Analysis , 1999, NeuroImage.

[15]  J D Watson,et al.  Nonparametric Analysis of Statistic Images from Functional Mapping Experiments , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[17]  R. Weisskoff,et al.  Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel‐level false‐positive rates in fMRI , 1998, Human brain mapping.

[18]  R. L. Thomas,et al.  Modern Econometrics: An Introduction , 1997 .

[19]  Olivier D. Faugeras,et al.  Flows of diffeomorphisms for multimodal image registration , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[20]  M. Bartlett On the Theoretical Specification and Sampling Properties of Autocorrelated Time‐Series , 1946 .

[21]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[22]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[23]  Julian J. Faraway,et al.  The Exact and Asymptotic Distributions of Cramer-von Mises Statistics , 1996 .

[24]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[26]  Keith J. Worsley,et al.  An improved theoretical P value for SPMs based on discrete local maxima , 2005, NeuroImage.

[27]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[28]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[29]  F. Å. Nielsen,et al.  lyngby 2.0 — A modeler's matlab tool☐ for spatio-temporal analysis of functional neuroimages , 2000, NeuroImage.

[30]  M. D’Esposito,et al.  A critique of the use of the Kolmogorov‐Smirnov (KS) statistic for the analysis of BOLD fMRI data , 1998, Magnetic resonance in medicine.

[31]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[32]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[33]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[34]  T A Carpenter,et al.  Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains , 2001, Human brain mapping.

[35]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[36]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[37]  Douglas C. Montgomery,et al.  Applied Statistics and Probability for Engineers, Third edition , 1994 .