Neural Basis of Orientation Perception in Primate Vision

Orientational differences in human visual acuity can be related parametrically to the distribution of optimal orientations for the receptive fields of neurons in the striate cortex of the rhesus monkey. Both behavioral measures of acuity and the distribution of receptive fields exhibit maximums for stimuli horizontal or vertical relative to the retina; the effect diminishes with distance from the fovea. The anisotropy in the neuronal population and in visual acuity appear to be determined by postnatal visual experience.

[1]  J. Pettigrew,et al.  Alteration of Visual Cortex from Environmental Asymmetries , 1973, Nature.

[2]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[3]  R. Freeman,et al.  Electrophysiological Evidence that Abnormal Early Visual Experience Can Modify the Human Brain , 1973, Science.

[4]  D E Mitchell,et al.  Visual Resolution and Experience: Acuity Deficits in Cats Following Early Selective Visual Deprivation , 1973, Science.

[5]  R D Freeman,et al.  Meridional amblyopia: evidence for modification of the human visual system by early visual experience. , 1973, Vision research.

[6]  P Gouras,et al.  Color and spatial specificity of single units in Rhesus monkey foveal striate cortex. , 1973, Journal of neurophysiology.

[7]  L. Maffei,et al.  Processes of Synthesis in Visual Perception , 1972, Nature.

[8]  S. Appelle Perception and discrimination as a function of stimulus orientation: the "oblique effect" in man and animals. , 1972, Psychological bulletin.

[9]  Poggio Gf Spatial properties of neurons in striate cortex of unanesthetized macaque monkey. , 1972 .

[10]  J. Robson,et al.  Spatial-frequency channels in human vision. , 1971, Journal of the Optical Society of America.

[11]  J. R. Lee,et al.  How Does the Striate Cortex Begin the Reconstruction of the Visual World? , 1971, Science.

[12]  N. Graham,et al.  Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channels models. , 1971, Vision research.

[13]  C. Blakemore,et al.  The perceived spatial frequency shift: evidence for frequency‐selective neurones in the human brain , 1970, The Journal of physiology.

[14]  D. N. Spinelli,et al.  Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats , 1970, Science.

[15]  F. Campbell,et al.  Electrophysiological evidence for the existence of orientation and size detectors in the human visual system , 1970, The Journal of physiology.

[16]  F. Campbell,et al.  Neurophysiological Localization of the Vertical and Horizontal Visual Coordinates in Man , 1970, Science.

[17]  G. Poggio,et al.  Afferent inhibition at input to visual cortex of the cat. , 1969, Journal of neurophysiology.

[18]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[19]  J. Hyvärinen,et al.  Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. , 1969, Journal of neurophysiology.

[20]  G. F. Cooper,et al.  The angular selectivity of visual cortical cells to moving gratings , 1968, The Journal of physiology.

[21]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[22]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[23]  F. Attneave,et al.  Discriminability of stimuli varying in physical and retinal orientation , 1967 .

[24]  D. Mitchell,et al.  Effect of orientation on the modulation sensitivity for interference fringes on the retina. , 1967, Journal of the Optical Society of America.

[25]  F. Campbell,et al.  The effect of orientation on the visual resolution of gratings , 1966, The Journal of physiology.

[26]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[27]  M. M. Taylor,et al.  Visual discrimination and orientation. , 1963, Journal of the Optical Society of America.

[28]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.