Bubbles: a unifying framework for low-level statistical properties of natural image sequences.

Recently, different models of the statistical structure of natural images have been proposed. These models predict properties of biological visual systems and can be used as priors in Bayesian inference. The fundamental model is independent component analysis, which can be estimated by maximization of the sparsenesses of linear filter outputs. This leads to the emergence of principal simple cell properties. Alternatively, simple cell properties are obtained by maximizing the temporal coherence in natural image sequences. Taking account of the basic dependencies of linear filter outputs permit modeling of complex cells and topographic organization as well. We propose a unifying framework for these statistical properties, based on the concept of spatiotemporal activity "bubbles."A bubble means here an activation of simple cells (linear filters) that is contiguous both in space (the cortical surface) and in time.

[1]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[2]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[3]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[5]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[6]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[10]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[11]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[12]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[13]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[15]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[16]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[17]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[18]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[19]  Robert F. Engle,et al.  ARCH: Selected Readings , 1995 .

[20]  Kiyotoshi Matsuoka,et al.  A neural net for blind separation of nonstationary signals , 1995, Neural Networks.

[21]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[22]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[23]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[24]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[25]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[26]  Geoffrey E. Hinton,et al.  Generative models for discovering sparse distributed representations. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[28]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[30]  D. Ruderman,et al.  INDEPENDENT COMPONENT ANALYSIS OF NATURAL IMAGE SEQUENCES YIELDS SPATIOTEMPORAL FILTERS SIMILAR TO SIMPLE CELLS IN PRIMARY VISUAL CORTEX , 1998 .

[31]  Eero P. Simoncelli,et al.  Modeling Surround Suppression in V1 Neurons with a Statistically Derived Normalization Model , 1998, NIPS.

[32]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[34]  Ali Mansour,et al.  Blind Separation of Sources , 1999 .

[35]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[36]  Gerhard Krieger,et al.  Nonlinear neurons and higher-order statistics: new approaches to human vision and digital image processing , 1999, Electronic Imaging.

[37]  Aapo Hyvärinen,et al.  Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation , 1999, Neural Computation.

[38]  P O Hoyer,et al.  Independent component analysis applied to feature extraction from colour and stereo images , 2000, Network.

[39]  Bruno A. Olshausen,et al.  Learning Sparse Image Codes using a Wavelet Pyramid Architecture , 2000, NIPS.

[40]  Aapo Hyvärinen,et al.  Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces , 2000, Neural Computation.

[41]  L. Finkel,et al.  Color-opponent receptive fields derived from independent component analysis of natural images , 2000, Vision Research.

[42]  T. W. Lee,et al.  Chromatic structure of natural scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[44]  Konrad P. Körding,et al.  Extracting Slow Subspaces from Natural Videos Leads to Complex Cells , 2001, ICANN.

[45]  Eero P. Simoncelli,et al.  Random Cascades on Wavelet Trees and Their Use in Analyzing and Modeling Natural Images , 2001 .

[46]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[47]  Martin J. Wainwright,et al.  Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[48]  Aapo Hyvärinen,et al.  A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.

[49]  Bruno A. Olshausen,et al.  Sparse Codes and Spikes , 2001 .

[50]  Aapo Hyvärinen,et al.  Topographic Independent Component Analysis , 2001, Neural Computation.

[51]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[52]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[53]  Aapo Hyvärinen,et al.  Blind source separation by nonstationarity of variance: a cumulant-based approach , 2001, IEEE Trans. Neural Networks.

[54]  Laurenz Wiskott,et al.  Applying Slow Feature Analysis to Image Sequences Yields a Rich Repertoire of Complex Cell Properties , 2002, ICANN.

[55]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[56]  A. Hyvärinen,et al.  A multi-layer sparse coding network learns contour coding from natural images , 2002, Vision Research.

[57]  Aapo Hyvärinen,et al.  Simple-Cell-Like Receptive Fields Maximize Temporal Coherence in Natural Video , 2003, Neural Computation.

[58]  Aapo Hyvärinen,et al.  A two-layer temporal generative model of natural video exhibits complex-cell-like pooling of simple cell outputs , 2003, Neurocomputing.

[59]  Patrik O. Hoyer,et al.  Modeling Receptive Fields with Non-Negative Sparse Coding , 2002, Neurocomputing.

[60]  Bruno A. Olshausen,et al.  Principles of Image Representation in Visual Cortex , 2003 .

[61]  Arthur E. C. Pece,et al.  The Problem of Sparse Image Coding , 2002, Journal of Mathematical Imaging and Vision.

[62]  Aapo Hyvärinen,et al.  Estimating Overcomplete Independent Component Bases for Image Windows , 2002, Journal of Mathematical Imaging and Vision.

[63]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[64]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[65]  Lars Kai Hansen,et al.  Guest Editorial: Special Issue on Statistics of Shapes and Textures , 2004, Journal of Mathematical Imaging and Vision.