Using hierarchical fuzzy behaviors in the RoboCup domain

An important reason for the popularity of the behavior-based paradigm in autonomous robotics is the possibility to design complex robot behaviors in an incremental way. We propose a fuzzy hierarchical behavior-based architecture, in which rules and meta-rules are used in a uniform way at all levels of the control hierarchy. This architecture has been successfully used in a number of robots performing autonomous navigation tasks. In this paper, we show the use of hierarchical fuzzy behaviors to implement a set of navigation and ball control behaviors for a Sony four-legged robot operating in the RoboCup domain. We also show that the logical structure of the rules and the hierarchical decomposition simplify the design of very complex behaviors, like the "GoalKeeper" behavior.

[1]  Alessandro Saffiotti,et al.  The uses of fuzzy logic in autonomous robot navigation , 1997, Soft Comput..

[2]  Alessandro Saffiotti,et al.  Fuzzy Logic Techniques for Autonomous Vehicle Navigation , 2001 .

[3]  A Hunter,et al.  Special Issue on Data and Knowledge Fusion , 2001 .

[4]  Nicholas Rescher,et al.  The Logic of Decision and Action , 1967 .

[5]  Alessandro Saffiotti,et al.  Active perceptual anchoring of robot behavior in a dynamic environment , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[7]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[8]  Hamid R. Berenji,et al.  Responses to Elkan (Hamid R. Berenji) , 1994, IEEE Expert.

[9]  John Yen,et al.  A fuzzy logic based extension to Payton and Rosenblatt's command fusion method for mobile robot navigation , 1995, IEEE Trans. Syst. Man Cybern..

[10]  Charles Elkan,et al.  The paradoxical success of fuzzy logic , 1993, IEEE Expert.

[11]  Alessandro Saffiotti,et al.  A fuzzy behavior-based control system for manipulation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  H. Berenji The Unique strength of Fuzzy Logic Control , 2001 .

[13]  James A. Hendler,et al.  Planning: What it is, What it could be, An Introduction to the Special Issue on Planning and Scheduling , 1995, Artif. Intell..

[14]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[15]  R. Hursthouse THE LOGIC OF DECISION AND ACTION , 1969 .

[16]  Alessandro Saffiotti,et al.  Using the Electric Field Approach in the RoboCup Domain , 2001, RoboCup.

[17]  Alessandro Saffiotti,et al.  Fuzzy landmark-based localization for a legged robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[18]  Alessandro Saffiotti,et al.  A Multivalued Logic Approach to Integrating Planning and Control , 1995, Artif. Intell..

[19]  Jyh-Shing Roger Jang,et al.  A hierarchical approach to designing approximate reasoning-based controllers for dynamic physical systems , 1990, UAI.

[20]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[21]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[22]  David W. Payton,et al.  An architecture for reflexive autonomous vehicle control , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[23]  Kurt Konolige,et al.  Blending reactivity and goal-directedness in a fuzzy controller , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[24]  Enrique H. Ruspini,et al.  Truth as Utility: A Conceptual Synthesis , 1991, UAI.