Generating All Vertices of a Polyhedron Is Hard

We show that generating all negative cycles of a weighted graph is a hard enumeration problem, in both the directed and undirected cases. More precisely, given a family of negative (directed) cycles, it is an NP-complete problem to decide whether this family can be extended or there are no other negative (directed) cycles in the graph, implying that (directed) negative cycles cannot be generated in polynomial output time, unless P=NP. As a corollary, we solve in the negative two well-known generating problems from linear programming: (i) Given an infeasible system of linear inequalities, generating all minimal infeasible subsystems is hard. Yet, for generating maximal feasible subsystems the complexity remains open. (ii) Given a feasible system of linear inequalities, generating all vertices of the corresponding polyhedron is hard. Yet, in the case of bounded polyhedra the complexity remains open. Equiva lently, the complexity of generating vertices and extreme rays of polyhedra remains open.

[1]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[2]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[3]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[4]  David Avis,et al.  How good are convex hull algorithms? , 1995, SCG '95.

[5]  Leonid Khachiyan,et al.  On the Complexity of Dualization of Monotone Disjunctive Normal Forms , 1996, J. Algorithms.

[6]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[7]  Franco P. Preparata,et al.  The Densest Hemisphere Problem , 1978, Theor. Comput. Sci..

[8]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[9]  Marc E. Pfetsch,et al.  The maximum feasible subsystem problem and vertex-facet incidences of polyhedra , 2003 .

[10]  T. H. Mattheiss,et al.  An Algorithm for Determining Irrelevant Constraints and all Vertices in Systems of Linear Inequalities , 1973, Oper. Res..

[11]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[12]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1992, Discret. Comput. Geom..

[13]  Leslie E. Trotter,et al.  On the maximum feasible subsystem problem, IISs and IIS-hypergraphs , 2003, Math. Program..

[14]  M. E. Dyer,et al.  The Complexity of Vertex Enumeration Methods , 1983, Math. Oper. Res..

[15]  Abraham Charnes,et al.  An introduction to linear programming , 1954 .

[16]  Eugene L. Lawler,et al.  Generating all Maximal Independent Sets: NP-Hardness and Polynomial-Time Algorithms , 1980, SIAM J. Comput..

[17]  R. Seidel Output-size sensitive algorithms for constructive problems in computational geometry , 1987 .

[18]  David Bremner,et al.  Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..

[19]  Vladimir Gurvich,et al.  Enumerating Minimal Dicuts and Strongly Connected Subgraphs and Related Geometric Problems , 2004, IPCO.

[20]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[21]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[22]  H. Raiffa,et al.  3. The Double Description Method , 1953 .

[23]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[24]  Michael R. Bussieck,et al.  The vertex set of a 0/1-polytope is strongly P-enumerable , 1998, Comput. Geom..

[25]  Robert E. Tarjan,et al.  Bounds on Backtrack Algorithms for Listing Cycles, Paths, and Spanning Trees , 1975, Networks.

[26]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[27]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[28]  T. Gallai,et al.  Maximum-Minimum Sätze über Graphen , 1958 .

[29]  Thomas M. Liebling,et al.  Analysis of Backtrack Algorithms for Listing All Vertices and All Faces of a Convex Polyhedron , 1997, Comput. Geom..

[30]  GARRET SWART,et al.  Finding the Convex Hull Facet by Facet , 1985, J. Algorithms.

[31]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[32]  M. Balinski An algorithm for finding all vertices of convex polyhedral sets , 1959 .

[33]  J. Scott Provan Efficient enumeration of the vertices of polyhedra associated with network LP's , 1994, Math. Program..

[34]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[35]  Acta mathematica Academiae Scientiarum Hungaricae , 1964 .

[36]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[37]  David Bremner,et al.  Incremental Convex Hull Algorithms Are Not Output Sensitive , 1996, ISAAC.

[38]  Jennifer Ryan,et al.  Identifying Minimally Infeasible Subsystems of Inequalities , 1990, INFORMS J. Comput..

[39]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[40]  Sammani Danwawu Abdullahi Vertex enumeration and counting for certain classes of polyhedra , 2002 .

[41]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[42]  Martin E. Dyer,et al.  An algorithm for determining all extreme points of a convex polytope , 1977, Math. Program..

[43]  Jennifer Ryan IIS-Hypergraphs , 1996, SIAM J. Discret. Math..

[44]  Georg Gottlob,et al.  Identifying the Minimal Transversals of a Hypergraph and Related Problems , 1995, SIAM J. Comput..

[45]  N. Chakravarti Some results concerning post-infeasibility analysis , 1994 .

[46]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..