Shortest distance problems in graphs using history-dependent transition costs with application to kinodynamic path planning

A new algorithm is presented to compute the shortest path on a graph when the node transition costs depend on the prior history of the path to the current node. The algorithm is applied to solve path planning problems with curvature constraints.

[1]  Dinesh K. Pai,et al.  Multiresolution rough terrain motion planning , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[2]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[3]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[4]  Larry S. Davis,et al.  Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..

[5]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[6]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[7]  Sergey Bereg,et al.  Curvature-bounded traversals of narrow corridors , 2005, Symposium on Computational Geometry.

[8]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[9]  Marin Simina,et al.  Kinodynamic motion planning , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[10]  P. Tsiotras,et al.  Multiresolution path planning with wavelets: A local replanning approach , 2008, 2008 American Control Conference.

[11]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[12]  Sven Behnke,et al.  Local Multiresolution Path Planning , 2003, RoboCup.

[13]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[14]  B. Donald,et al.  Kinodynamic Motion Planning 1 Kinodynamic Motion Planning 5 , 1993 .

[15]  Hiroshi Noborio,et al.  A quadtree-based path-planning algorithm for a mobile robot , 1990, J. Field Robotics.

[16]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[17]  Panagiotis Tsiotras,et al.  Beyond quadtrees: Cell decompositions for path planning using wavelet transforms , 2007, 2007 46th IEEE Conference on Decision and Control.

[18]  Panagiotis Tsiotras,et al.  Beyond Quadtrees: Cell Decomposition for Path Planning using the Wavelet Transform , 2007 .

[19]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[20]  Efstathios Bakolas,et al.  A hierarchical on-line path planning scheme using wavelets , 2007, 2007 European Control Conference (ECC).

[21]  N. Shimkin,et al.  Fast Graph-Search Algorithms for General-Aviation Flight Trajectory Generation , 2005 .

[22]  Ben J. H. Verwer,et al.  A multiresolution work space, multiresolution configuration space approach to solve the path planning problem , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[23]  P. Tsiotras,et al.  Minimum-Time Travel for a Vehicle with Acceleration Limits: Theoretical Analysis and Receding-Horizon Implementation , 2008 .

[24]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[25]  Bruce Randall Donald,et al.  Kinodynamic motion planning , 1993, JACM.

[26]  Stephan Winter,et al.  Modeling Costs of Turns in Route Planning , 2002, GeoInformatica.