Asymptotics and Super Asymptotics for Best Rational Approximation Error Norms to the Exponential Function (The ‘1/9’ Problem) by the Carathéodory-Fejér Method

Let E nbe the error norm of the best L ∞ rational approximation of degree n to the exponential function exp(-t) on [0,∞). Grounds are given for setting the conjectured limit E n / q n →2q 1/2 when n →∞, where q is the known constant ‘l/9’= 1/9.2890254919208189187554494359517450610316948677…, based on the singular values and functions of the relevant Henkel operator (Caratheodory-Fejer’s method).

[1]  L. Trefethen,et al.  The Carathéodory–Fejér Method for Real Rational Approximation , 1983 .

[2]  R. Varga Scientific Computations on Mathematical Problems and Conjectures , 1987 .

[3]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[4]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, II , 1986 .

[5]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[6]  P. Mäkilä,et al.  Approximation of delay systems—a case study , 1991 .

[7]  L. Wuytack,et al.  Computational Aspects of Complex Analysis , 1983 .

[8]  R. Varga,et al.  Rational Approximation and Interpolation , 1985 .

[9]  J. Helton,et al.  Symmetric Hankel operators: minimal norm extensions and eigenstructures , 1993 .

[10]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[11]  Jean Meinguet,et al.  A Simplified Presentation of the Adamjan-Arov-Krein Approximation Theory , 1983 .

[12]  Ben Silver,et al.  Elements of the theory of elliptic functions , 1990 .

[13]  A. B. Olde Daalhuis Hyperasymptotic expansions of confluent hypergeometric functions , 1991 .

[14]  C. Chui,et al.  On the convergence rate ofs-numbers of compact Hankel operators , 1992 .

[15]  A. Magnus On the Use of the Carathéodory-Fejér Method for Investigating ‘1/9’ and Similar Constants , 1988 .

[16]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[17]  R. Varga,et al.  Extended numerical computations on the “1/9” conjecture in rational approximation theory , 1984 .

[18]  L. Trefethen,et al.  The CF table , 1990 .

[19]  Nico M. Temme,et al.  Uniform Airy-type expansions of integrals , 1994 .