Asymptotics and Super Asymptotics for Best Rational Approximation Error Norms to the Exponential Function (The ‘1/9’ Problem) by the Carathéodory-Fejér Method
暂无分享,去创建一个
[1] L. Trefethen,et al. The Carathéodory–Fejér Method for Real Rational Approximation , 1983 .
[2] R. Varga. Scientific Computations on Mathematical Problems and Conjectures , 1987 .
[3] R. Varga,et al. Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .
[4] Herbert Stahl,et al. Orthogonal polynomials with complex-valued weight function, II , 1986 .
[5] E. Rakhmanov,et al. EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .
[6] P. Mäkilä,et al. Approximation of delay systems—a case study , 1991 .
[7] L. Wuytack,et al. Computational Aspects of Complex Analysis , 1983 .
[8] R. Varga,et al. Rational Approximation and Interpolation , 1985 .
[9] J. Helton,et al. Symmetric Hankel operators: minimal norm extensions and eigenstructures , 1993 .
[10] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .
[11] Jean Meinguet,et al. A Simplified Presentation of the Adamjan-Arov-Krein Approximation Theory , 1983 .
[12] Ben Silver,et al. Elements of the theory of elliptic functions , 1990 .
[13] A. B. Olde Daalhuis. Hyperasymptotic expansions of confluent hypergeometric functions , 1991 .
[14] C. Chui,et al. On the convergence rate ofs-numbers of compact Hankel operators , 1992 .
[15] A. Magnus. On the Use of the Carathéodory-Fejér Method for Investigating ‘1/9’ and Similar Constants , 1988 .
[16] M. Kreĭn,et al. ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .
[17] R. Varga,et al. Extended numerical computations on the “1/9” conjecture in rational approximation theory , 1984 .
[18] L. Trefethen,et al. The CF table , 1990 .
[19] Nico M. Temme,et al. Uniform Airy-type expansions of integrals , 1994 .