Some Concepts of Stability Analysis in Combinatorial optimization

Abstract This paper surveys the recent results in stability analysis for discrete optimization problems, such as a traveling salesman problem, an assignment problem, a shortest path problem, a Steiner problem, a scheduling problem and so on. The terms “stability”, “sensitivity” or “postoptimal analysis” are generally used for the phase of an algorithm at which a solution (or solutions) of the problem has been already found, and additional calculations are also performed in order to investigate how this solution depends on changes in the problem data. In this paper, the main attention is paid to the stability region and to the stability ball of optimal or approximate solutions. A short sketch of some other close results has been added to emphasize the differences in approach surveyed.

[1]  Robert E. Tarjan,et al.  Sensitivity Analysis of Minimum Spanning Trees and Shortest Path Trees , 1982, Inf. Process. Lett..

[2]  Kevin Mahon,et al.  Deterministic and Stochastic Scheduling , 1983 .

[3]  Gideon Weiss,et al.  Stochastic scheduling problems I — General strategies , 1984, Z. Oper. Research.

[4]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[5]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[6]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[7]  Michael Pinedo,et al.  Optimal policies in stochastic shop scheduling , 1984, Ann. Oper. Res..

[8]  Ulrich Derigs,et al.  A shortest augmenting path method for solving minimal perfect matching problems , 1981, Networks.

[9]  A. Kan Machine Scheduling Problems: Classification, Complexity and Computations , 1976 .

[10]  Michael Pinedo,et al.  Stochastic Shop Scheduling: A Survey , 1982 .

[11]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[12]  Floyd J. Gould,et al.  Stability in Nonlinear Programming , 1970, Oper. Res..

[13]  Patricia J. Carstensen Complexity of some parametric integer and network programming problems , 1983, Math. Program..

[14]  Douglas R. Shier,et al.  Arc tolerances in shortest path and network flow problems , 1980, Networks.

[15]  Arthur M. Geoffrion,et al.  Exceptional Paper—Parametric and Postoptimality Analysis in Integer Linear Programming , 1977 .

[16]  Toji Makino ON A SCHEDULING PROBLEM , 1965 .

[17]  Charles E. Blair,et al.  The value function of an integer program , 1982, Math. Program..

[18]  V. S. Tanaev,et al.  Scheduling Theory: Multi-Stage Systems , 1994 .

[19]  Y. N. Stoskov Stability of an optimal schedule , 1991 .

[20]  V. K. Leont'ev,et al.  Parametric trajectory problems , 1984 .

[21]  Jacob Paroush,et al.  Sensitivity analysis of the classical transportation problem. A combinatorial approach , 1977, Comput. Oper. Res..

[22]  I. V. Sergienko,et al.  Solution of a parametric integer programming problem , 1982 .

[23]  J. B. G. Frenk,et al.  A General Framework for Stochastic One-machine Scheduling Problems with Zero Release Times and No Partial Ordering , 1991, Probability in the Engineering and Informational Sciences.

[24]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[25]  Marek Libura,et al.  Sensitivity analysis for minimum Hamiltonian path and traveling salesman problems , 1991, Discret. Appl. Math..

[26]  Rainer Hettich,et al.  On the Numerical Stability of Simplex-Algorithms , 1987 .

[27]  Anthony V. Fiacco,et al.  Sensitivity, stability, and parametric analysis , 1984 .

[28]  Stephen M. Robinson,et al.  A Characterization of Stability in Linear Programming , 1977, Oper. Res..

[29]  Laurence A. Wolsey,et al.  Integer programming duality: Price functions and sensitivity analysis , 1981, Math. Program..

[30]  Salah E. Elmaghraby Sensitivity Analysis of Multiterminal Flow Networks , 1964 .

[31]  U. Zimmermann Linear optimization for linear and bottleneck objectives with one nonlinear parameter , 1980 .

[32]  V. K. Leont'ev,et al.  Stability in bottleneck problems , 1980 .

[33]  Rolf H. Möhring,et al.  Introduction to Stochastic Scheduling Problems , 1985 .

[34]  Dan Gusfield,et al.  A note on Arc tolerances in sparse shortest-path and network flow problems , 1983, Networks.

[35]  Gary M. Roodman Postoptimality analysis in integer programming by implicit enumeration: The mixed integer case , 1974 .

[36]  V. K. Leont'ev,et al.  Computational algorithms for finding the radius of stability in problems of choice , 1983 .

[37]  Arthur M. Geoffrion,et al.  Parametric and Postoptimality Analysis in Integer Linear Programming , 1976 .

[38]  G. M. Weber Sensitivity analysis of optimal matchings , 1981, Networks.

[39]  Svetlana A. Kravchenko,et al.  Optimal schedules with infinitely large stability radius , 1995 .

[40]  C. Dinescu,et al.  Sensitive and parametric analysis of the maximum flow in a network , 1984 .

[41]  Pawel Winter,et al.  Steiner problem in networks: A survey , 1987, Networks.

[42]  B. Bank Stability analysis in pure and mixed-integer linear programming , 1980 .

[43]  E. N. Gordeyev Algorithms of polynomial complexity for computing the radius of instability in two classes of trajectory problems , 1987 .

[44]  Maurice Queyranne,et al.  The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling , 1978, Oper. Res..

[45]  Gideon Weiss,et al.  Multiserver Stochastic Scheduling , 1982 .