Gym-ANM: Reinforcement Learning Environments for Active Network Management Tasks in Electricity Distribution Systems

[1]  Wojciech M. Czarnecki,et al.  Grandmaster level in StarCraft II using multi-agent reinforcement learning , 2019, Nature.

[2]  Gabriel Dulac-Arnold,et al.  Challenges of Real-World Reinforcement Learning , 2019, ArXiv.

[3]  Qichao Zhang,et al.  Reinforcement Learning and Deep Learning based Lateral Control for Autonomous Driving , 2018, IEEE Comput. Intell. Mag..

[4]  Russ Tedrake,et al.  Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation , 2018, NeurIPS.

[5]  F. Yang,et al.  Microgrids , 2018, Power Systems.

[6]  Sergey Levine,et al.  Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor , 2018, ICML.

[7]  Stephen P. Boyd,et al.  A Rewriting System for Convex Optimization Problems , 2017, J. Control. Decis..

[8]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[9]  Damien Ernst,et al.  Reinforcement Learning for Electric Power System Decision and Control: Past Considerations and Perspectives , 2017 .

[10]  Etienne Perot,et al.  Deep Reinforcement Learning framework for Autonomous Driving , 2017, Autonomous Vehicles and Machines.

[11]  Sergey Levine,et al.  Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[13]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[14]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[15]  Damien Ernst,et al.  Active network management for electrical distribution systems: problem formulation, benchmark, and approximate solution , 2014, 1405.2806.

[16]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[17]  Jan Peters,et al.  Reinforcement learning in robotics: A survey , 2013, Int. J. Robotics Res..

[18]  Jan Peters,et al.  A Survey on Policy Search for Robotics , 2013, Found. Trends Robotics.

[19]  Darwin G. Caldwell,et al.  Reinforcement Learning in Robotics: Applications and Real-World Challenges , 2013, Robotics.

[20]  Steffen Rebennack,et al.  Optimal power flow: a bibliographic survey I , 2012, Energy Systems.

[21]  Steffen Rebennack,et al.  Optimal power flow: a bibliographic survey II , 2012, Energy Systems.

[22]  Carlos Bordons Alba,et al.  Model Predictive Control , 2012 .

[23]  Xi Fang,et al.  3. Full Four-channel 6.3-gb/s 60-ghz Cmos Transceiver with Low-power Analog and Digital Baseband Circuitry 7. Smart Grid — the New and Improved Power Grid: a Survey , 2022 .

[24]  Istvan Erlich,et al.  Reactive Power Capability of Wind Turbines Based on Doubly Fed Induction Generators , 2011, IEEE Transactions on Energy Conversion.

[25]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[26]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[27]  Paul L. Joskow,et al.  Lessons Learned From Electricity Market Liberalization , 2008 .

[28]  R.J. Thomas,et al.  On voltage collapse in electric power systems , 1989, Conference Papers Power Industry Computer Application Conference.

[29]  F. Graf,et al.  Renewable Power-to-Gas: A technological and economic review , 2016 .

[30]  Luis F. Ochoa,et al.  Assessing the Potential of Network Reconfiguration to Improve Distributed Generation Hosting Capacity in Active Distribution Systems , 2015, IEEE Transactions on Power Systems.

[31]  Ivana Kockar,et al.  Dynamic Optimal Power Flow for Active Distribution Networks , 2014, IEEE Transactions on Power Systems.

[32]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[33]  W. Tinney,et al.  Optimal Power Flow by Newton Approach , 1984, IEEE Power Engineering Review.