Redundant robotic chains on Riemannian submersions

The paper introduces the notion of Riemannian submersion for the modeling and control of certain types of redundant robotic chains. In the robotics literature, the redundant case is normally treated only in numerical terms, as the need to resort to pseudoinversion techniques is usually considered a barrier to the use of analytic or geometric methods. Using Riemannian submersions, however, we can single out a particular type of inverse, the horizontal lift, with distinguished properties with respect to the infinitely many possible others. Quite remarkably, for a wide class of robotic chains, characterized by the vanishing of the curvature tensor, such horizontal lift coincides with the curve obtained from the Moore-Penrose pseudoinverse of the Jacobian.

[1]  Daniel E. Koditschek,et al.  Application of a new Lyapunov function to global adaptive attitude tracking , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[2]  Vijay Kumar,et al.  On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..

[3]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[4]  D. Koditschek Robot kinematics and coordinate transformations , 1985, 1985 24th IEEE Conference on Decision and Control.

[5]  C. Altafini The de casteljau algorithm on SE(3) , 2001 .

[6]  A. Lichnerowicz,et al.  Géométrie des groupes de transformations , 1958 .

[7]  Charles W. Wampler,et al.  On the Inverse Kinematics of Redundant Manipulators , 1988, Int. J. Robotics Res..

[8]  John M. Lee Riemannian Manifolds: An Introduction to Curvature , 1997 .

[9]  Mark W. Spong,et al.  Feedback linearization of robot manipulators and riemannian curvature , 1995, J. Field Robotics.

[10]  Richard M. Murray,et al.  Tracking for fully actuated mechanical systems: a geometric framework , 1999, Autom..

[11]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[12]  Claudio Altafini Geometric Motion Control for a Kinematically Redundant Robotic Chain: Application to a Holonomic Mobile Manipulator , 2003, J. Field Robotics.

[13]  T. Shamir,et al.  Repeatability of redundant manipulators: mathematical solution of the problem , 1988 .

[14]  E. Cartan La Géométrie des groupes de transformation , 1927 .

[15]  Robert Hermann,et al.  A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle , 1960 .

[16]  F. Park Distance Metrics on the Rigid-Body Motions with Applications to Mechanism Design , 1995 .

[17]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Nazareth S. Bedrossian Control Theory And Transformation Methods In Classical Mechanics , 1990, 1990 American Control Conference.

[19]  D. Taghirad Ieee Transactions on Robotics and Automation 1 Robust Torque Control of Harmonic Drive Systems , 1997 .

[20]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .