Transformation of shape information in the ventral pathway

Object perception seems effortless to us, but it depends on intensive neural processing across multiple stages in ventral pathway visual cortex. Shape information at the retinal level is hopelessly complex, variable and implicit. The ventral pathway must somehow transform retinal signals into much more compact, stable and explicit representations of object shape. Recent findings highlight key aspects of this transformation: higher-order contour derivatives, structural representation in object-based coordinates, composite shape tuning dimensions, and long-term storage of object knowledge. These coding principles could help to explain our remarkable ability to perceive, distinguish, remember and understand a virtual infinity of objects.

[1]  David D. Cox,et al.  'Breaking' position-invariant object recognition , 2005, Nature Neuroscience.

[2]  J. Wolfe,et al.  Preattentive Object Files: Shapeless Bundles of Basic Features , 1997, Vision Research.

[3]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[5]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[6]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[7]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[8]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[9]  Minami Ito,et al.  Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys , 2004, The Journal of Neuroscience.

[10]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  M. Riesenhuber,et al.  Evaluation of a Shape-Based Model of Human Face Discrimination Using fMRI and Behavioral Techniques , 2006, Neuron.

[12]  Ohad Ben-Shahar,et al.  Visual saliency and texture segregation without feature gradient , 2006, Proceedings of the National Academy of Sciences.

[13]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[14]  Scott L. Brincat,et al.  Dynamic Shape Synthesis in Posterior Inferotemporal Cortex , 2006, Neuron.

[15]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[16]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[17]  R. Desimone,et al.  Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys , 2000, Nature Neuroscience.

[18]  H. Wilson,et al.  fMRI evidence for the neural representation of faces , 2005, Nature Neuroscience.

[19]  J M Wolfe,et al.  Curvature is a Basic Feature for Visual Search Tasks , 1992, Perception.

[20]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[21]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[22]  M. Ernst,et al.  Experience can change the 'light-from-above' prior , 2004, Nature Neuroscience.

[23]  Martin Arguin,et al.  Conjunction and linear non-separability effects in visual shape encoding , 2000, Vision Research.

[24]  J. Hegdé,et al.  A comparative study of shape representation in macaque visual areas v2 and v4. , 2007, Cerebral cortex.

[25]  T. Poggio,et al.  The importance of symmetry and virtual views in three-dimensional object recognition , 1994, Current Biology.

[26]  Manabu Tanifuji,et al.  Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex. , 2006, Journal of neurophysiology.

[27]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[28]  N. Kanwisher,et al.  The Human Body , 2001 .

[29]  I. Biederman,et al.  Tuning for shape dimensions in macaque inferior temporal cortex , 2005, The European journal of neuroscience.

[30]  Keiji Tanaka,et al.  Prior experience of rotation is not required for recognizing objects seen from different angles , 2005, Nature Neuroscience.

[31]  Tjeerd Jellema,et al.  Neural representations of perceived bodily actions using a categorical frame of reference , 2006, Neuropsychologia.

[32]  N. Kanwisher,et al.  Face perception: domain specific, not process specific. , 2004, Neuron.

[33]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[34]  G. Rhodes,et al.  Identification and ratings of caricatures: Implications for mental representations of faces , 1987, Cognitive Psychology.

[35]  Hugh R. Wilson,et al.  Curvature population coding for complex shapes in human vision , 2004, Vision Research.

[36]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[37]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[38]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[39]  H. Wilson,et al.  Concentric orientation summation in human form vision , 1997, Vision Research.

[40]  N. Kanwisher,et al.  Can generic expertise explain special processing for faces? , 2007, Trends in Cognitive Sciences.

[41]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[42]  Sylvia Wirth,et al.  Representation of Well-Learned Information in the Monkey Hippocampus , 2004, Neuron.

[43]  Yasushi Miyashita,et al.  Forward Processing of Long-Term Associative Memory in Monkey Inferotemporal Cortex , 2003, The Journal of Neuroscience.

[44]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[45]  E. Miller,et al.  Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. , 2005, Cerebral cortex.

[46]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[47]  D. P. Andrews,et al.  Acuities for spatial arrangement in line figures: human and ideal observers compared. , 1973, Vision research.

[48]  Rebecca F. Schwarzlose,et al.  Separate face and body selectivity on the fusiform gyrus. , 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[50]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[51]  L. Frank,et al.  Single Neurons in the Monkey Hippocampus and Learning of New Associations , 2003, Science.

[52]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[53]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[54]  H. Bülthoff,et al.  Effects of temporal association on recognition memory , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Tarr,et al.  Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Michael Kubovy,et al.  Caricature and face recognition , 1992, Memory & cognition.

[57]  B. Murphy,et al.  Adaptation to natural facial categories , .

[58]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.