Digital genetics: unravelling the genetic basis of evolution

Digital genetics, or the genetics of digital organisms, is a new field of research that has become possible as a result of the remarkable power of evolution experiments that use computers. Self-replicating strands of computer code that inhabit specially prepared computers can mutate, evolve and adapt to their environment. Digital organisms make it easy to conduct repeatable, controlled experiments, which have a perfect genetic 'fossil record'. This allows researchers to address fundamental questions about the genetic basis of the evolution of complexity, genome organization, robustness and evolvability, and to test the consequences of mutations, including their interaction and recombination, on the fate of populations and lineages.

[1]  N. Pierce Origin of Species , 1914, Nature.

[2]  P. J. Hughesdon,et al.  The Struggle for Existence , 1927, Nature.

[3]  G. Gauze The struggle for existence, by G. F. Gause. , 1934 .

[4]  K. Atwood,et al.  Periodic selection in Escherichia coli. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. D. Bernal,et al.  “The Origins of Life” , 1957, Nature.

[6]  M. Kimura,et al.  The mutational load with epistatic gene interactions in fitness. , 1966, Genetics.

[7]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[8]  P. Feldman Evolution of sex , 1975, Nature.

[9]  C. A. Hutchison,et al.  Overlapping genes in bacteriophage φX174 , 1976, Nature.

[10]  R. Malmberg The evolution of epistasis and the advantage of recombination in populations of bacteriophage T4. , 1977, Genetics.

[11]  E. Mayr,et al.  On the evolution of photoreceptors and eyes , 1977 .

[12]  T. Miyata,et al.  Evolution of overlapping genes , 1978, Nature.

[13]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .

[14]  G. Bell The Masterpiece of Nature , 2019 .

[15]  P. Schuster,et al.  Stationary mutant distributions and evolutionary optimization. , 1988, Bulletin of mathematical biology.

[16]  A. Kondrashov Deleterious mutations and the evolution of sexual reproduction , 1988, Nature.

[17]  S. Gould Wonderful Life: The Burgess Shale and the Nature of History , 1989 .

[18]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations , 1991, The American Naturalist.

[19]  John Maynard Smith,et al.  Byte-sized evolution , 1992, Nature.

[20]  T. Ray Evolution , Ecology and Optimization of Digital Organisms , 1992 .

[21]  M. Ridley The Red Queen: Sex and the Evolution of Human Nature , 1993 .

[22]  A. Kondrashov,et al.  Classification of hypotheses on the advantage of amphimixis. , 1993, The Journal of heredity.

[23]  The red queen: Sex and the evolution of human nature: by Matt Ridley Viking, 1993. £17.99 hbk (viii + 404 pages) ISBN 0670 843571 , 1994 .

[24]  C. Lively,et al.  Selection by parasites for clonal diversity and mixed mating. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  J. Peck A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. , 1994, Genetics.

[26]  J. W. Valentine,et al.  Morphological complexity increase in metazoans , 1994, Paleobiology.

[27]  L W Buss,et al.  What would be conserved if "the tape were played twice"? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Lenski,et al.  Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[30]  A. F. Bennett,et al.  Experimental tests of the roles of adaptation, chance, and history in evolution. , 1995, Science.

[31]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[32]  S. Gould Full House: The Spread of Excellence from Plato to Darwin , 1996 .

[33]  R. Dawkins Climbing Mount Improbable , 1996 .

[34]  D. McShea PERSPECTIVE METAZOAN COMPLEXITY AND EVOLUTION: IS THERE A TREND? , 1996, Evolution; international journal of organic evolution.

[35]  Charles Weijer,et al.  Full House: The Spread of Excellence from Plato to Darwin. , 1997 .

[36]  C. Lively,et al.  THE MAINTENANCE OF SEX BY PARASITISM AND MUTATION ACCUMULATION UNDER EPISTATIC FITNESS FUNCTIONS , 1998, Evolution; international journal of organic evolution.

[37]  A. D. Peters,et al.  Testing for epistasis between deleterious mutations. , 1998, Genetics.

[38]  J. Drake,et al.  Mutation rates among RNA viruses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Christoph Adami,et al.  Evolution of genetic organization in digital organisms , 1999, ArXiv.

[41]  Johan Bollen,et al.  The evolution of complexity , 1999 .

[42]  L. Caporale Chance Favors the Prepared Genome , 1999, Annals of the New York Academy of Sciences.

[43]  C. Ofria,et al.  Genome complexity, robustness and genetic interactions in digital organisms , 1999, Nature.

[44]  Christoph Endres,et al.  Introduction to Artificial Life , 2000, Künstliche Intell..

[45]  D. Krakauer,et al.  STABILITY AND EVOLUTION OF OVERLAPPING GENES , 2000, Evolution; international journal of organic evolution.

[46]  L. Hurst Epistasis and the Evolutionary Process , 2000, Heredity.

[47]  R. Fernald Evolution of eyes , 2000, Current Opinion in Neurobiology.

[48]  Daniel W. McShea,et al.  Functional Complexity in Organisms: Parts as Proxies , 2000 .

[49]  D. Lancet,et al.  Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Gunther J. Eble,et al.  The evolution of complexity , 2001, Complex..

[51]  C. Ofria,et al.  Evolution of digital organisms at high mutation rates leads to survival of the flattest , 2001, Nature.

[52]  S. Yokoyama,et al.  The molecular genetics and evolution of red and green color vision in vertebrates. , 2001, Genetics.

[53]  G. Yedid,et al.  Microevolution in an Electronic Microcosm , 2001, The American Naturalist.

[54]  C. Wilke,et al.  Interaction between directional epistasis and average mutational effects , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  C. Wilke,et al.  The biology of digital organisms , 2002 .

[56]  M. Pagel Encyclopedia of evolution , 2002 .

[57]  S. Otto,et al.  Evolution of sex: Resolving the paradox of sex and recombination , 2002, Nature Reviews Genetics.

[58]  T. Johnson,et al.  The effect of deleterious alleles on adaptation in asexual populations. , 2002, Genetics.

[59]  D. Krakauer,et al.  Redundancy, antiredundancy, and the robustness of genomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Evandro Agazzi,et al.  What is Complexity , 2002 .

[61]  W. Rice Evolution of sex: Experimental tests of the adaptive significance of sexual recombination , 2002, Nature Reviews Genetics.

[62]  Christoph Adami,et al.  Design of evolvable computer languages , 2002, IEEE Trans. Evol. Comput..

[63]  R. Lenski,et al.  Microbial genetics: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation , 2003, Nature Reviews Genetics.

[64]  Robert T. Pennock,et al.  The evolutionary origin of complex features , 2003, Nature.

[65]  Christoph Adami,et al.  Selective pressures on genomes in molecular evolution , 2003, Journal of theoretical biology.

[66]  Claus O Wilke,et al.  Probability of fixation of an advantageous mutant in a viral quasispecies. , 2002, Genetics.

[67]  S. West,et al.  TESTING FOR EPISTASIS BETWEEN DELETERIOUS MUTATIONS IN A PARASITOID WASP , 2003, Evolution; international journal of organic evolution.

[68]  G. Bell,et al.  Divergent evolution during an experimental adaptive radiation , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[69]  C. Wilke,et al.  Evolution of mutational robustness. , 2003, Mutation research.

[70]  Claus O. Wilke,et al.  Does the Red Queen Reign in the Kingdom of Digital Organisms? , 2003, ECAL.

[71]  Christoph Adami,et al.  Influence of Chance, History, and Adaptation on Digital Evolution , 2004, Artificial Life.

[72]  Jeffrey A. Edlund,et al.  Evolution of Robustness in Digital Organisms , 2004, Artificial Life.

[73]  Claus O. Wilke,et al.  Evolution of Resource Competition between Mutually Dependent Digital Organisms , 2004, Artificial Life.

[74]  Charles Ofria,et al.  Avida , 2004, Artificial Life.

[75]  Juno Choe,et al.  Protein tolerance to random amino acid change. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Rafael Sanjuán,et al.  The contribution of epistasis to the architecture of fitness in an RNA virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. Lenski,et al.  The fate of competing beneficial mutations in an asexual population , 2004, Genetica.

[78]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[79]  N. Packard,et al.  Transitions from Nonliving to Living Matter , 2004, Science.

[80]  C. Ofria,et al.  Adaptive Radiation from Resource Competition in Digital Organisms , 2004, Science.

[81]  S. Chisholm,et al.  Properties of overlapping genes are conserved across microbial genomes. , 2004, Genome research.

[82]  Peter F. Stadler,et al.  Proto-Organism Kinetics: Evolutionary Dynamics of Lipid Aggregates with Genes and Metabolism , 2004, Origins of life and evolution of the biosphere.

[83]  A. Wagner Robustness and Evolvability in Living Systems , 2005 .

[84]  Carl Zimmer,et al.  How and Where Did Life on Earth Arise? , 2005, Science.

[85]  C. Ofria,et al.  Sexual reproduction reshapes the genetic architecture of digital organisms , 2006, Proceedings of the Royal Society B: Biological Sciences.

[86]  Claus O Wilke,et al.  Quasispecies theory in the context of population genetics , 2005, BMC Evolutionary Biology.

[87]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[88]  H. Rundle,et al.  Ecological speciation: Ecological speciation , 2005 .

[89]  Christoph Adami,et al.  Thermodynamic prediction of protein neutrality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Christopher R. Jones,et al.  Sex increases the efficacy of natural selection in experimental yeast populations , 2005, Nature.