RRT* GL Based Path Planning for Virtual Aerial Navigation

In this paper, we describe a path planning system for virtual navigation based on a RRT combination of RRT* Goal and Limit. The propose system includes a point cloud obtained from the virtual workspace with a RGB-D sensor, an identification module for interest regions and obstacles of the environment, and a collision-free path planner based on Rapidly-exploring Random Trees (RRT) for a safe and optimal virtual navigation of UAVs in 3D spaces.

[1]  Patrick Benavidez,et al.  Mobile robot navigation and target tracking system , 2011, 2011 6th International Conference on System of Systems Engineering.

[2]  Mohammed Bennamoun,et al.  A novel algorithm for efficient depth segmentation using low resolution (Kinect) images , 2015, 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA).

[3]  Derong Liu,et al.  Optimization of electricity consumption in office buildings based on adaptive dynamic programming , 2017, Soft Comput..

[4]  Cecilio Angulo Bahón,et al.  Control autónomo de cuadricópteros para seguimiento de trayectorias , 2014 .

[5]  Livio Pinto,et al.  Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors , 2015, Sensors.

[6]  Peter I. Corke,et al.  Robotics, Vision and Control - Fundamental Algorithms in MATLAB® , 2011, Springer Tracts in Advanced Robotics.

[7]  K. Sreedhar,et al.  Enhancement of Images using Morphological Transformation , 2012, ArXiv.

[8]  Du Xin,et al.  Neural network and genetic algorithm based global path planning in a static environment , 2005 .

[9]  Burkhard Wünsche,et al.  Using the Kinect as a navigation sensor for mobile robotics , 2012, IVCNZ '12.

[10]  Roland Siegwart,et al.  Conference Presentation Slides on Kinect v2 for Mobile Robot Navigation: Evaluation and Modeling , 2015 .

[11]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Cecilio Angulo,et al.  Real-Time Model-Based Video Stabilization for Microaerial Vehicles , 2015, Neural Processing Letters.

[13]  Yogita Gigras,et al.  Path Planning Problem , 2014 .

[14]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[15]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[16]  Spyros G. Tzafestas,et al.  Robotics for engineers , 1987, Proceedings of the IEEE.

[17]  Quoc V. Le,et al.  Grasping novel objects with depth segmentation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Siddhartha S. Srinivasa,et al.  Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Amir Averbuch,et al.  Color image segmentation based on adaptive local thresholds , 2005, Image Vis. Comput..

[21]  Homayoun Seraji,et al.  Behavior-based robot navigation on challenging terrain: A fuzzy logic approach , 2002, IEEE Trans. Robotics Autom..

[22]  Elise Lachat,et al.  Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling , 2015, Remote. Sens..

[23]  Huaping Liu,et al.  An improved ant colony algorithm for robot path planning , 2017, Soft Comput..

[24]  Masahiro Fujita,et al.  3D Perception and Environment Map Generation for Humanoid Robot Navigation , 2008, Int. J. Robotics Res..

[25]  Didier Devaurs,et al.  Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces , 2014, WAFR.

[26]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[27]  Cecilio Angulo,et al.  Real-time video stabilization without phantom movements for micro aerial vehicles , 2014, EURASIP J. Image Video Process..

[28]  Stan C. A. M. Gielen,et al.  Neural Network Dynamics for Path Planning and Obstacle Avoidance , 1995, Neural Networks.

[29]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[30]  Cecilio Angulo,et al.  Robust video stabilization based on motion intention for low-cost micro aerial vehicles , 2014, 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14).

[31]  Wilbert G. Aguilar,et al.  Haptic-based navigation for the virtual bronchoscopy , 2011 .

[32]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.