A Proactive Indoor Positioning System in Randomly Deployed Dense WiFi Networks

A new approach for indoor positioning is presented, aimed at designing a WiFi positioning system that is feasible and convenient for both service providers and end users. In the proposed approach, only access points (APs) need to collect the received signal strengthes (RSS) of mobile devices, and use these RSS samples to jointly estimate the devices' locations. To enhance the accuracy of positioning, the relationship between the RSS samples and their geometrical locations is explored, leading to a sparse Bayesian model for the radio power map of the RSS observations of each AP. With more than 20 training anchors, the accuracy of the proposed model-based positioning method can be lower than 3.4 meters in an indoor space with only 4 randomly deployed APs, which outperforms the fingerprinting method by 0.4 meter. Extensive experimental results also verify that the proposed positioning service can offer considerable accuracy with only limited efforts in training, suggesting that the prototype is realistic for randomly deployed dense WiFi networks.

[1]  Andrew G. Dempster,et al.  Indoor Positioning Techniques Based on Wireless LAN , 2007 .

[2]  Shahrokh Valaee,et al.  Received-Signal-Strength-Based Indoor Positioning Using Compressive Sensing , 2012, IEEE Transactions on Mobile Computing.

[3]  Santiago Mazuelas,et al.  Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks , 2009, IEEE Journal of Selected Topics in Signal Processing.

[4]  Shahrokh Valaee,et al.  Joint Indoor Localization and Radio Map Construction with Limited Deployment Load , 2015, IEEE Transactions on Mobile Computing.

[5]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[6]  Wen-Rong Wu,et al.  Cooperative Radio Source Positioning and Power Map Reconstruction: A Sparse Bayesian Learning Approach , 2015, IEEE Transactions on Vehicular Technology.

[7]  Chuan Heng Foh,et al.  A practical path loss model for indoor WiFi positioning enhancement , 2007, 2007 6th International Conference on Information, Communications & Signal Processing.

[8]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[9]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .