Navigation of miniature legged robots using a new template

This paper contributes to the area of miniature legged robots by investigating how a recently introduced bio-inspired template for such robots can be used for navigation. The model is simple and intuitive, and capable of capturing the salient features of the horizontal-plane behavior of an eight-legged miniature robot. We validate that the model can be combined with readily available navigation techniques, and then use it to plan the motion of the eight-legged miniature robot, which is tasked to crawl at low speeds, in obstacle-cluttered environments.

[1]  P. Holmes,et al.  Steering by transient destabilization in piecewise-holonomic models of legged locomotion , 2008 .

[2]  David Zarrouk,et al.  STAR, a sprawl tuned autonomous robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[3]  Jonathan E. Clark,et al.  iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running , 2006, Int. J. Robotics Res..

[4]  Philip Holmes,et al.  Mechanical models for insect locomotion: dynamics and stability in the horizontal plane – II. Application , 2000, Biological Cybernetics.

[5]  Konstantinos Karydis,et al.  A passively sprawling miniature legged robot , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Konstantinos Karydis,et al.  Probabilistically valid stochastic extensions of deterministic models for systems with uncertainty , 2015, Int. J. Robotics Res..

[7]  Konstantinos Karydis,et al.  Probabilistic validation of a stochastic kinematic model for an eight-legged robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[8]  Konstantinos Karydis,et al.  A switching kinematic model for an octapedal robot , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Full,et al.  Many-legged maneuverability: dynamics of turning in hexapods , 1999, The Journal of experimental biology.

[10]  Philip Holmes,et al.  Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory , 2000, Biological Cybernetics.

[11]  Robert J. Wood,et al.  Microrobot Design Using Fiber Reinforced Composites , 2008 .

[12]  Ronald S. Fearing,et al.  Systematic study of the performance of small robots on controlled laboratory substrates , 2010, Defense + Commercial Sensing.

[13]  Yan Liu,et al.  A template candidate for miniature legged robots in quasi-static motion , 2015, Auton. Robots.

[14]  David Zarrouk,et al.  Compliance-based dynamic steering for hexapods , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Konstantinos Karydis,et al.  Planning with the STAR(s) , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Sangyoon Lee,et al.  A Cockroach-Inspired Hexapod Robot Actuated by LIPCA , 2006, 2006 IEEE Conference on Robotics, Automation and Mechatronics.

[17]  Chris H. Mullens,et al.  Insects running on elastic surfaces , 2010, Journal of Experimental Biology.

[18]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[19]  Ronald S. Fearing,et al.  Walking and running on yielding and fluidizing ground , 2012, Robotics: Science and Systems.

[20]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[21]  Samuel Burden,et al.  Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[22]  Roger D. Quinn,et al.  A Small, Insect-Inspired Robot that Runs and Jumps , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[23]  David Zarrouk,et al.  Dynamic turning of 13 cm robot comparing tail and differential drive , 2012, 2012 IEEE International Conference on Robotics and Automation.

[24]  Allison Mathis,et al.  AUTONOMOUS NAVIGATION OF A 5 GRAM CRAWLING MILLIROBOT IN A COMPLEX ENVIRONMENT , 2012 .

[25]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[26]  Roger D. Quinn,et al.  Highly mobile and robust small quadruped robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[27]  Philip Holmes,et al.  Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions , 2004, Biological Cybernetics.

[28]  Steven M. LaValle,et al.  Planning algorithms , 2006 .