Bridging Images and Videos: A Simple Learning Framework for Large Vocabulary Video Object Detection

[1]  Seoung Wug Oh,et al.  Per-Clip Video Object Segmentation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Philipp Krähenbühl,et al.  Global Tracking Transformers , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Armand Joulin,et al.  Detecting Twenty-thousand Classes using Image-level Supervision , 2022, ECCV.

[4]  Ping Luo,et al.  ByteTrack: Multi-Object Tracking by Associating Every Detection Box , 2021, ECCV.

[5]  X. Zhang,et al.  MOTR: End-to-End Multiple-Object Tracking with TRansformer , 2021, ECCV.

[6]  Idil Esen Zulfikar,et al.  Opening up Open World Tracking , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Philipp Krähenbühl,et al.  Simple Multi-dataset Detection , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  L. Leal-Taixé,et al.  TrackFormer: Multi-Object Tracking with Transformers , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Stephen Lin,et al.  Bootstrap Your Object Detector via Mixed Training , 2021, NeurIPS.

[10]  Xiaokang Yang,et al.  Learning to Track Objects from Unlabeled Videos , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  Jianren Wang,et al.  Wanderlust: Online Continual Object Detection in the Real World , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[12]  Dong Xuan,et al.  On Model Calibration for Long-Tailed Object Detection and Instance Segmentation , 2021, NeurIPS.

[13]  Xiang Bai,et al.  End-to-End Semi-Supervised Object Detection with Soft Teacher , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[14]  Yihe Tang,et al.  Humble Teachers Teach Better Students for Semi-Supervised Object Detection , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Se-Young Yun,et al.  Comparing Kullback-Leibler Divergence and Mean Squared Error Loss in Knowledge Distillation , 2021, IJCAI.

[16]  Hwann-Tzong Chen,et al.  DropLoss for Long-Tail Instance Segmentation , 2021, AAAI.

[17]  Sanja Fidler,et al.  Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection , 2021, ICML.

[18]  Du Tran,et al.  Unidentified Video Objects: A Benchmark for Dense, Open-World Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[19]  Ming Tang,et al.  Adaptive Class Suppression Loss for Long-Tail Object Detection , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Jan Kautz,et al.  Learning to Track Instances without Video Annotations , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Xiaolong Wang,et al.  Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[22]  Songyang Zhang,et al.  Distribution Alignment: A Unified Framework for Long-tail Visual Recognition , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Junsong Yuan,et al.  Track to Detect and Segment: An Online Multi-Object Tracker , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Philipp Krähenbühl,et al.  Probabilistic two-stage detection , 2021, ArXiv.

[25]  Chen Change Loy,et al.  FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[26]  Boqing Gong,et al.  MosaicOS: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Ross B. Girshick,et al.  Evaluating Large-Vocabulary Object Detectors: The Devil is in the Details , 2021, ArXiv.

[28]  Gang Zhang,et al.  Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Quoc V. Le,et al.  Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Kai Chen,et al.  Seesaw Loss for Long-Tailed Instance Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Trevor Darrell,et al.  Quasi-Dense Similarity Learning for Multiple Object Tracking , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Xinggang Wang,et al.  FairMOT: On the Fairness of Detection and Re-identification in Multiple Object Tracking , 2020, International Journal of Computer Vision.

[33]  Nuno Vasconcelos,et al.  Cascade R-CNN: High Quality Object Detection and Instance Segmentation , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  P. Luo,et al.  TransTrack: Multiple-Object Tracking with Transformer , 2020, ArXiv.

[35]  Qifeng Chen,et al.  Blind Video Temporal Consistency via Deep Video Prior , 2020, NeurIPS.

[36]  Hong-Han Shuai,et al.  S2SiamFC: Self-supervised Fully Convolutional Siamese Network for Visual Tracking , 2020, ACM Multimedia.

[37]  Shiyu Chang,et al.  Lifelong Object Detection , 2020, ArXiv.

[38]  Philip H. S. Torr,et al.  GDumb: A Simple Approach that Questions Our Progress in Continual Learning , 2020, ECCV.

[39]  Feiyue Huang,et al.  Chained-Tracker: Chaining Paired Attentive Regression Results for End-to-End Joint Multiple-Object Detection and Tracking , 2020, ECCV.

[40]  Jiashi Feng,et al.  The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation , 2020, ECCV.

[41]  Hongsheng Li,et al.  Balanced Meta-Softmax for Long-Tailed Visual Recognition , 2020, NeurIPS.

[42]  Yu Wang,et al.  Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets , 2020, ECCV.

[43]  Abhinav Gupta,et al.  Aligning Videos in Space and Time , 2020, ECCV.

[44]  In So Kweon,et al.  Video Panoptic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Sheng Tang,et al.  Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Deva Ramanan,et al.  TAO: A Large-Scale Benchmark for Tracking Any Object , 2020, ECCV.

[47]  Han Zhang,et al.  A Simple Semi-Supervised Learning Framework for Object Detection , 2020, ArXiv.

[48]  Hong-Yuan Mark Liao,et al.  YOLOv4: Optimal Speed and Accuracy of Object Detection , 2020, ArXiv.

[49]  Vladlen Koltun,et al.  Tracking Objects as Points , 2020, ECCV.

[50]  Yi Jiang,et al.  Learning to Segment the Tail , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Zhichao Lu,et al.  RetinaTrack: Online Single Stage Joint Detection and Tracking , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Trevor Darrell,et al.  Frustratingly Simple Few-Shot Object Detection , 2020, ICML.

[53]  Junjie Yan,et al.  Equalization Loss for Long-Tailed Object Recognition , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Erika Lu,et al.  MAST: A Memory-Augmented Self-Supervised Tracker , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Quoc V. Le,et al.  Self-Training With Noisy Student Improves ImageNet Classification , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Saining Xie,et al.  Decoupling Representation and Classifier for Long-Tailed Recognition , 2019, ICLR.

[57]  Shengjin Wang,et al.  Towards Real-Time Multi-Object Tracking , 2019, ECCV.

[58]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[59]  C. Yoo,et al.  Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution , 2019, NeurIPS.

[60]  Xueting Li,et al.  Joint-task Self-supervised Learning for Temporal Correspondence , 2019, NeurIPS.

[61]  Kai Chen,et al.  MMDetection: Open MMLab Detection Toolbox and Benchmark , 2019, ArXiv.

[62]  Ross B. Girshick,et al.  LVIS: A Dataset for Large Vocabulary Instance Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Yandong Guo,et al.  Large Scale Incremental Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Seong Joon Oh,et al.  CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[65]  Yuchen Fan,et al.  Video Instance Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[66]  In So Kweon,et al.  Deep Video Inpainting , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Zihang Lai,et al.  Self-supervised Learning for Video Correspondence Flow , 2019, ArXiv.

[68]  Stella X. Yu,et al.  Large-Scale Long-Tailed Recognition in an Open World , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Wei Liu,et al.  Unsupervised Deep Tracking , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Ning Xu,et al.  Video Object Segmentation Using Space-Time Memory Networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[71]  Yoshua Bengio,et al.  Gradient based sample selection for online continual learning , 2019, NeurIPS.

[72]  Laura Leal-Taixé,et al.  Tracking Without Bells and Whistles , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[73]  Kai Chen,et al.  Hybrid Task Cascade for Instance Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[74]  Seetha Hari,et al.  Learning From Imbalanced Data , 2019, Advances in Computer and Electrical Engineering.

[75]  Stephen Lin,et al.  Integrated Object Detection and Tracking with Tracklet-Conditioned Detection , 2018, ArXiv.

[76]  Ersin Yumer,et al.  Learning Blind Video Temporal Consistency , 2018, ECCV.

[77]  Sergio Guadarrama,et al.  Tracking Emerges by Colorizing Videos , 2018, ECCV.

[78]  Kalyan Sunkavalli,et al.  Fast Video Object Segmentation by Reference-Guided Mask Propagation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[79]  Yichen Wei,et al.  Simple Baselines for Human Pose Estimation and Tracking , 2018, ECCV.

[80]  Philip H. S. Torr,et al.  Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence , 2018, ECCV.

[81]  Nuno Vasconcelos,et al.  Cascade R-CNN: Delving Into High Quality Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[82]  Andrew Zisserman,et al.  Detect to Track and Track to Detect , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[83]  Cordelia Schmid,et al.  Incremental Learning of Object Detectors without Catastrophic Forgetting , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[84]  Bohyung Han,et al.  Multi-object Tracking with Quadruplet Convolutional Neural Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[85]  Jiwon Kim,et al.  Continual Learning with Deep Generative Replay , 2017, NIPS.

[86]  Daniel Cremers,et al.  Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking , 2017, ArXiv.

[87]  Byoung-Tak Zhang,et al.  Overcoming Catastrophic Forgetting by Incremental Moment Matching , 2017, NIPS.

[88]  Dietrich Paulus,et al.  Simple online and realtime tracking with a deep association metric , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[89]  Silvio Savarese,et al.  Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[90]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[91]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[92]  Christoph H. Lampert,et al.  iCaRL: Incremental Classifier and Representation Learning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[93]  Konrad Schindler,et al.  Online Multi-Target Tracking Using Recurrent Neural Networks , 2016, AAAI.

[94]  Konrad Schindler,et al.  Learning by Tracking: Siamese CNN for Robust Target Association , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[95]  Silvio Savarese,et al.  Learning to Track at 100 FPS with Deep Regression Networks , 2016, ECCV.

[96]  Fabio Tozeto Ramos,et al.  Simple online and realtime tracking , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[97]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[98]  James M. Rehg,et al.  Multiple Hypothesis Tracking Revisited , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[99]  Bodo Rosenhahn,et al.  Expanding object detector's Horizon: Incremental learning framework for object detection in videos , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[100]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[101]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[102]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[103]  Eli Shechtman,et al.  PatchMatch: a randomized correspondence algorithm for structural image editing , 2009, ACM Trans. Graph..

[104]  Ellen Riloff,et al.  Learning Extraction Patterns for Subjective Expressions , 2003, EMNLP.

[105]  David A. Forsyth,et al.  Finding and tracking people from the bottom up , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[106]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[107]  Ellen Riloff,et al.  Automatically Generating Extraction Patterns from Untagged Text , 1996, AAAI/IAAI, Vol. 2.

[108]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[109]  H. J. Scudder,et al.  Probability of error of some adaptive pattern-recognition machines , 1965, IEEE Trans. Inf. Theory.