Two-stage Localisation Scheme Using a Small-scale Linear Microphone Array for Indoor Environments

The small-scale linear microphone arrays that arewidely found in smartphones could be usedto locate a sound source for indoor environments. After the Time Differences Of Arrival(TDOAs) in microphone pairs are estimated, a TDOA-based hybrid localisation scheme isproposed for a small-scale linear microphone array. The scheme contains two stages: the initi-alisation stage using the Levenberg-Marquardt (LM) algorithm, and the refining solutionstage using the Weighted Least-Square (WLS) algorithm or the Multi-Dimensional Scaling-based (MDS) algorithm. Simulations and field tests show that the proposed indoor localis-ation scheme outperforms the existing schemes, and it can achieve an average error of 0·32metres in an 8 m by 5 m area.KEYWORDS

[1]  Yuwei Chen,et al.  A Smart Phone Based PDR Solution for Indoor Navigation , 2011 .

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  U. Michel,et al.  Localisation of sound sources on moving vehicles with microphone arrays. , 2003 .

[4]  Lie-Liang Yang,et al.  Time delay tracking for positioning in DTV networks , 2012, 2012 Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS).

[5]  Yuwei Chen,et al.  Using Motion-Awareness for the 3D Indoor Personal Navigation on a Smartphone , 2011 .

[6]  Qun Wan,et al.  Multidimensional Scaling Analysis for Passive Moving Target Localization With TDOA and FDOA Measurements , 2010, IEEE Transactions on Signal Processing.

[7]  Charlie Cullen,et al.  Investigating ultrasonic positioning on mobile phones , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[8]  Michael S. Brandstein,et al.  Robust Localization in Reverberant Rooms , 2001, Microphone Arrays.

[9]  Yuwei Chen,et al.  iParking: An Intelligent Indoor Location-Based Smartphone Parking Service , 2012, Sensors.

[10]  Yuwei Chen,et al.  Human Behavior Cognition Using Smartphone Sensors , 2013, Sensors.

[11]  Bernard D. Steinberg,et al.  Principles of aperture and array system design: Including random and adaptive arrays , 1976 .

[12]  G. Carter,et al.  The generalized correlation method for estimation of time delay , 1976 .

[13]  Christian Schindelhauer,et al.  Acoustic Self-calibrating System for Indoor Smartphone Tracking (ASSIST) , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[14]  Matti S. Hämäläinen,et al.  Passive self-localization of microphones using ambient sounds , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[15]  Charlie Cullen,et al.  Asynchronous Ultrasonic Trilateration for Indoor Positioning of Mobile Phones , 2012, W2GIS.

[16]  Manolis I. A. Lourakis A Brief Description of the Levenberg-Marquardt Algorithm Implemented by levmar , 2005 .

[17]  Jarrett Webb,et al.  Beginning Kinect Programming with the Microsoft Kinect SDK , 2012, Apress.

[18]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[19]  Christian Schindelhauer,et al.  Self-localization application for iPhone using only ambient sound signals , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[20]  Wei Chen,et al.  An effective Pedestrian Dead Reckoning algorithm using a unified heading error model , 2010, IEEE/ION Position, Location and Navigation Symposium.

[21]  Yuwei Chen,et al.  Bayesian Fusion for Indoor Positioning Using Bluetooth Fingerprints , 2013, Wirel. Pers. Commun..

[22]  Augusto Sarti,et al.  Scream and gunshot detection and localization for audio-surveillance systems , 2007, 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.

[23]  Michael B. Mathews,et al.  SCP Enabled Navigation Using Signals of Opportunity in GPS Obstructed Environments , 2011 .

[24]  Yuwei Chen,et al.  Accelerometer assisted robust wireless signal positioning based on a hidden Markov model , 2010, IEEE/ION Position, Location and Navigation Symposium.

[25]  Ruizhi Chen,et al.  Inquiry-Based Bluetooth Indoor Positioning via RSSI Probability Distributions , 2010, 2010 Second International Conference on Advances in Satellite and Space Communications.

[26]  Liang Chen,et al.  Reliability considerations of multi-sensor multi-network pedestrian navigation , 2012 .

[27]  Ruizhi Chen,et al.  Visual-aided Two-dimensional Pedestrian Indoor Navigation with a Smartphone , 2011 .

[28]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[29]  Sverre Holm,et al.  Ultrasound positioning based on time-of-flight and signal strength , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[30]  K. C. Ho,et al.  A simple and efficient estimator for hyperbolic location , 1994, IEEE Trans. Signal Process..

[31]  Arun Ross,et al.  Microphone Arrays , 2009, Encyclopedia of Biometrics.

[32]  Eric Foxlin,et al.  Pedestrian tracking with shoe-mounted inertial sensors , 2005, IEEE Computer Graphics and Applications.

[33]  Ling Pei,et al.  Motion Recognition Assisted Indoor Wireless Navigation on a Mobile Phone , 2010 .

[34]  Ruizhi Chen,et al.  A Hybrid Smartphone Indoor Positioning Solution for Mobile LBS , 2012, Sensors.

[35]  G. Carter Coherence and time delay estimation , 1987, Proceedings of the IEEE.

[36]  Ivan Tashev,et al.  Optimal 3D Beamforming Using Measured Microphone Directivity Patterns , 2012, IWAENC.

[37]  John F. Raquet,et al.  Magnetic field navigation in an indoor environment , 2010, 2010 Ubiquitous Positioning Indoor Navigation and Location Based Service.

[38]  Ruizhi Chen,et al.  Using Inquiry-based Bluetooth RSSI Probability Distributions for Indoor Positioning , 2011 .

[39]  Yuwei Chen,et al.  Sensing strides using EMG signal for pedestrian navigation , 2011 .

[40]  André Gilloire,et al.  Microphone array for sound pickup in teleconference systems , 1994 .

[41]  B. Schulte-Werning,et al.  Recent developments in noise research at Deutsche Bahn (noise assessment, noise source localization and specially monitored track) , 2003 .

[42]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[43]  Gomes Goncalo,et al.  Indoor Location System Using ZigBee Technology , 2009, 2009 Third International Conference on Sensor Technologies and Applications.

[44]  Michael Shapiro Brandstein,et al.  A framework for speech source localization using sensor arrays , 1995 .

[45]  J. Ianniello,et al.  Time delay estimation via cross-correlation in the presence of large estimation errors , 1982 .

[46]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[47]  Kaveh Pahlavan,et al.  Indoor geolocation in the absence of direct path , 2006, IEEE Wireless Communications.

[48]  Zhangxin Chen,et al.  Multidimensional scaling-based passive emitter localisation from range-difference measurements , 2008 .

[49]  Jean Francois Piet,et al.  Localization of the acoustic sources of the A340 with a large phased microphone array during flight tests. , 2002 .

[50]  Yuwei Chen,et al.  Using LS-SVM Based Motion Recognition for Smartphone Indoor Wireless Positioning , 2012, Sensors.

[51]  J. Syrjärinne,et al.  Studies of Modern Techniques for Personal Positioning , 2001 .