Nonlinear Structural Finite Element Model Updating Using Batch Bayesian Estimation

This paper proposes framework for nonlinear finite element (FE) model updating, in which state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with the maximum likelihood estimation (MLE) method to estimate time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure. Using the MLE as a parameter estimation tool results in a nonlinear optimization problem, which can be efficiently solved using gradient-based optimization algorithms such as the interior-point method. Gradient-based optimization algorithms require the FE response sensitivities with respect to the material parameters to be identified, which are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities. A proof-of-concept example, consisting of a cantilever steel column representing a bridge pier, is provided to validate the proposed nonlinear FE model updating framework. The simulated responses of this bridge pier to an earthquake ground motion is polluted with artificial output measurement noise and used to estimate the unknown parameters of the material constitutive model. The example illustrates the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise.

[1]  J. Beck Bayesian system identification based on probability logic , 2010 .

[2]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[3]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[4]  Joel P. Conte,et al.  Consistent Finite-Element Response Sensitivity Analysis , 2003 .

[5]  Siu-Kui Au,et al.  Bayesian parameter identification of hysteretic behavior of composite walls , 2013 .

[6]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[7]  Ka-Veng Yuen,et al.  Bayesian Methods for Updating Dynamic Models , 2011 .

[8]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[9]  Chin-Hsiung Loh,et al.  Time domain estimation of structural parameters , 1988 .

[10]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[11]  Y. Bozorgnia,et al.  Methods of Analysis for Earthquake-Resistant Structures , 2004 .

[12]  K. Bathe Finite Element Procedures , 1995 .

[13]  S. T. Mau,et al.  Systems Identification of Degrading Hysteretic Restoring Forces , 1988 .

[14]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[15]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[16]  Richard W. Longman,et al.  On‐line identification of non‐linear hysteretic structural systems using a variable trace approach , 2001 .

[17]  Andrew W. Smyth,et al.  On-Line Parametric Identification of MDOF Nonlinear Hysteretic Systems , 1999 .

[18]  Eleni Chatzi,et al.  Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty , 2010 .

[19]  M. Hoshiya,et al.  Structural Identification by Extended Kalman Filter , 1984 .

[20]  Jasbir S. Arora,et al.  Nonlinear structural design sensivitity analysis for path dependent problems. Part 1: General theory , 1990 .

[21]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .

[22]  Linda Simo Mthembu,et al.  FINITE ELEMENT MODEL UPDATING , 2013 .

[23]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .

[24]  Lambros S. Katafygiotis,et al.  Unified Probabilistic Approach for Model Updating and Damage , 2006 .

[25]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[26]  F. Filippou,et al.  Methods of Analysisfor Earthquake- Resistant Structures , 2004 .

[27]  Joel P. Conte,et al.  Material Parameter Identification in Distributed Plasticity FE Models of Frame-Type Structures Using Nonlinear Stochastic Filtering , 2015 .

[28]  J. Juang Applied system identification , 1994 .

[29]  Duong Hien Tran,et al.  Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations , 1997 .

[30]  A. Kiureghian,et al.  Dynamic response sensitivity of inelastic structures , 1993 .

[31]  Joel P. Conte,et al.  Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method , 2015 .

[32]  Graham C. Goodwin,et al.  Dynamic System Identification: Experiment Design and Data Analysis , 2012 .

[33]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .