Complexity Theory of Real Functions

Starting with Cook's pioneering work on NP-completeness in 1970, polynomial complexity theory, the study of polynomial-time com putability, has quickly emerged as the new foundation of algorithms. On the one hand, it bridges the gap between the abstract approach of recursive function theory and the concrete approach of analysis of algorithms. It extends the notions and tools of the theory of computability to provide a solid theoretical foundation for the study of computational complexity of practical problems. In addition, the theoretical studies of the notion of polynomial-time tractability some times also yield interesting new practical algorithms. A typical exam ple is the application of the ellipsoid algorithm to combinatorial op timization problems (see, for example, Lovasz [1986]). On the other hand, it has a strong influence on many different branches of mathe matics, including combinatorial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like to find a construc tive proof which admits a polynomial-time algorithm for the solution. One of the examples is the recent work on algorithmic theory of per mutation groups. In the area of numerical computation, there are also two tradi tionally independent approaches: recursive analysis and numerical analysis."

[1]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[2]  Ker-I Ko On the computational complexity of best Chebyshev approximations , 1986, J. Complex..

[3]  R. Soare Recursive theory and Dedekind cuts , 1969 .

[4]  Ker-I Ko On Self-Reducibility and Weak P-Selectivity , 1983, J. Comput. Syst. Sci..

[5]  Ker-I Ko,et al.  Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..

[6]  Henryk Wozniakowski,et al.  Information and Computation , 1984, Adv. Comput..

[7]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[8]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[9]  堵丁柱,et al.  COMPUTATIONAL COMPLEXITY OF INTEGRATION AND DIFFERENTIATION OF CONVEX FUNCTIONS , 1989 .

[10]  Ker-I Ko,et al.  Some Negative Results on the Computational Complexity of Total Variation and Differentiation , 1982, Inf. Control..

[11]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[12]  Marian Boykan Pour-El,et al.  Differentiability properties of computable functions - a summary , 1978, Acta Cybern..

[13]  Yuri Gurevich Complete and incomplete randomized NP problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[14]  Juris Hartmanis On Sparse Sets in NP - P , 1983, Inf. Process. Lett..

[15]  Ker-I Ko The Maximum Value Problem and NP Real Numbers , 1982, J. Comput. Syst. Sci..

[16]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[17]  H. James Hoover,et al.  Feasible Real Functions and Arithmetic Circuits , 1990, SIAM J. Comput..

[18]  Webb Miller Recursive Function Theory and Numerical Analysis , 1970, J. Comput. Syst. Sci..

[19]  Ker-I Ko,et al.  On Some Natural Complete Operators , 1985, Theor. Comput. Sci..

[20]  Neil D. Jones,et al.  Complete problems for deterministic polynomial time , 1974, STOC '74.

[21]  Stathis Zachos,et al.  Probabilistic Quantifiers, Adversaries, and Complexity Classes: An Overview , 1986, SCT.

[22]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[23]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[24]  Ernst Specker,et al.  Der Satz vom Maximum in der Rekursiven Analysis , 1990 .

[25]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[26]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[27]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[28]  Janos Simon,et al.  Space-bounded probabilistic turing machine complexity classes are closed under complement (Preliminary Version) , 1981, STOC '81.

[29]  Theodore P. Baker,et al.  A Second Step toward the Polynomial Hierarchy , 1976, FOCS.

[30]  M. B. Pour-El,et al.  Noncomputability in analysis and physics: A complete determination of the class of noncomputable linear operators , 1983 .

[31]  M. B. Pour-El,et al.  COMPUTABILITY AND NONCOMPUTABILITY IN CLASSICAL ANALYSIS , 1983 .

[32]  Christoph Kreitz,et al.  Complexity theory on real numbers and functions , 1983, Theoretical Computer Science.

[33]  Timothy J. Long,et al.  A Note on Sparse Oracles for NP , 1982, J. Comput. Syst. Sci..

[34]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[35]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[36]  Y. Moschovakis Recursive metric spaces , 1964 .

[37]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[38]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[39]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[40]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[41]  Marian Boylan Pour-el,et al.  A computable ordinary differential equation which possesses no computable solution , 1979 .

[42]  Ker-I Ko,et al.  On the Computational Complexity of Ordinary Differential Equations , 1984, Inf. Control..

[43]  Piotr Berman Relationship Between Density and Deterministic Complexity of NP-Complete Languages , 1978, ICALP.

[44]  Janos Simon On some central problems in computational complexity , 1975 .

[45]  John N. Tsitsiklis,et al.  On the Complexity of Designing Distributed Protocols , 1982, Inf. Control..

[46]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[47]  Alan L. Selman Some Observations on NP, Real Numbers and P-Selective Sets , 1981, J. Comput. Syst. Sci..

[48]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[49]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[50]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[51]  Ker-I Ko,et al.  Continuous optimization problems and a polynomial hierarchy of real functions , 1985, J. Complex..

[52]  Marian Boykan Pour-El,et al.  On a simple definition of computable function of a real variable-with applications to functions of a complex variable , 1975, Math. Log. Q..

[53]  Andrzej Mostowski,et al.  On Various Degrees of Constructivism , 1979 .

[54]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[55]  H. Friedman,et al.  The computational complexity of maximization and integration , 1984 .

[56]  Stephen R. Mahaney Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[57]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[58]  Ker-I Ko,et al.  Computing power series in polynomial time , 1988 .

[59]  D. Newman Rational approximation to | x , 1964 .

[60]  Stathis Zachos,et al.  Robustness of Probabilistic Computational Complexity Classes under Definitional Perturbations , 1982, Inf. Control..

[61]  Steven Fortune,et al.  A Note on Sparse Complete Sets , 1978, SIAM J. Comput..

[62]  Neil Immerman,et al.  Sparse sets in NP-P: Exptime versus nexptime , 1983, Inf. Control..

[63]  Ker-I Ko,et al.  Computational complexity of roots of real functions , 1989, 30th Annual Symposium on Foundations of Computer Science.

[64]  E. Cheney Introduction to approximation theory , 1966 .

[65]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[66]  Ker-I Ko Integral equations, systems of quadratic equations, and exponential time completeness , 1991, STOC '91.

[67]  Yiannis N. Moschovakis,et al.  Notation systems and recursive ordered fields , 1966 .

[68]  Ker-I Ko,et al.  Approximation to measurable functions and its relation to probabilistic computation , 1986, Ann. Pure Appl. Log..

[69]  Ronald V. Book,et al.  Tally Languages and Complexity Classes , 1974, Inf. Control..

[70]  H. G. Rice,et al.  Recursive real numbers , 1954 .

[71]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[72]  Ernst Specker,et al.  The Fundamental Theorem of Algebra in Recursive Analysis , 1990 .

[73]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[74]  Alan L. Selman,et al.  Analogues of Semicursive Sets and Effective Reducibilities to the Study of NP Complexity , 1982, Inf. Control..

[75]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[76]  James Renegar,et al.  On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..

[77]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[78]  C. Jockusch Semirecursive sets and positive reducibility , 1968 .

[79]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[80]  J. Myhill,et al.  A recursive function, defined on a compact interval and having a continuous derivative that is not recursive. , 1971 .

[81]  Ephraim Feig,et al.  A fast parallel algorithm for determining all roots of a polynomial with real roots , 1986, STOC '86.

[82]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[83]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[84]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[85]  Clemens Lautemann,et al.  BPP and the Polynomial Hierarchy , 1983, Inf. Process. Lett..

[86]  Charles Rackoff,et al.  Relativized questions involving probabilistic algorithms , 1978, STOC 1978.

[87]  Norbert Th. Müller,et al.  Uniform Computational Complexity of Taylor Series , 1987, ICALP.

[88]  Robert I. Soare,et al.  Cohesive sets and recursively enumerable Dedekind cuts , 1969 .

[89]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[90]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[91]  José L. Balcázar,et al.  The polynomial-time hierarchy and sparse oracles , 1986, JACM.

[92]  Ronald V. Book Sparse Sets, Tally Sets, and Polynomial Reducibilities , 1988, MFCS.

[93]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[94]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[95]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[96]  C. Andrew Neff,et al.  Specified precision polynomial root isolation is in NC , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[97]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[98]  J. Tsitsiklis,et al.  Intractable problems in control theory , 1986 .

[99]  Ker-I Ko Relativized polynomial time hierarchies having exactly K levels , 1988, STOC '88.

[100]  Ker-I Ko,et al.  Constructing Oracles by Lower Bound Techniques for Circuits , 1989 .

[101]  A. Mostowski On computable sequences , 1957 .

[102]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[103]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[104]  Christopher B. Wilson A Measure of Relativized Space Which Is Faithful With Respect to Depth , 1988, J. Comput. Syst. Sci..

[105]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[106]  N. A. Sanin,et al.  Constructive Real Numbers and Function Spaces , 1968 .

[107]  Ker-I Ko Inverting a One-to-One Real Function Is Inherently Sequential , 1990 .

[108]  Osamu Watanabe On One-Way Functions , 1989 .

[109]  Timothy J. Long,et al.  Relativizing complexity classes with sparse oracles , 1986, JACM.