Adaptive disturbance rejection using ARMARKOV/Toeplitz models

In this paper we develop an adaptive disturbance rejection algorithm formulated in terms of an ARh1 A R KOC'/Toepli tz mat ris system representation. The algorithm is applied to the problem of active noise suppression in an acoustic duct, and experimental results demonstrating tonal and broadband disturbance rejection are presented.

[1]  P. P. Kanjilal,et al.  Adaptive Prediction and Predictive Control , 1995 .

[2]  Dennis S. Bernstein,et al.  Least Squares Identification Using p- Mar kov Pararnet erizat ions , 1998 .

[3]  Ravinder Venugopal,et al.  Adaptive disturbance rejection using AR-MARKOV/Toeplitz models , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[4]  M. O. Tokhi,et al.  Active noise control systems , 1987 .

[5]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[6]  Changbum Ahn An adaptive algorithm for identification of IIR systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[7]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[8]  Stephen J. Elliott,et al.  A multiple error LMS algorithm and its application to the active control of sound and vibration , 1987, IEEE Trans. Acoust. Speech Signal Process..

[9]  Craig A. Rogers,et al.  Control of sound radiation with active/adaptive structures , 1992 .

[10]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[11]  Neil J. Bershad,et al.  A frequency domain model for 'filtered' LMS algorithms-stability analysis, design, and elimination of the training mode , 1993, IEEE Trans. Signal Process..

[12]  Andreas H. von Flotow,et al.  Comparison and extensions of control methods for narrow-band disturbance rejection , 1992, IEEE Trans. Signal Process..

[13]  Wassim M. Haddad,et al.  Neural network system identification for improved noise rejection , 1997 .

[14]  J. C. Akers,et al.  ARMARKOV least-squares identification , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[15]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[16]  Dennis S. Bernstein,et al.  Adaptive disturbance rejection using ARMARKOV system representations , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[17]  J. Richalet,et al.  Industrial applications of model based predictive control , 1993, Autom..

[18]  Philip A. Nelson,et al.  Active Control of Sound , 1992 .

[19]  Akira Sano,et al.  Adaptation for active noise control , 1997 .

[20]  T. Van Pelt,et al.  Least squares identification using /spl mu/-Markov parameterizations , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[21]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[22]  B. Widrow,et al.  Adaptive inverse control , 1987, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[23]  Dennis S. Bernstein,et al.  Time-domain identification using ARMARKOV/Toeplitz models with quasi-Newton update , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[24]  G. Wittum,et al.  Adaptive filtering , 1997 .

[25]  Katsuhisa Furuta,et al.  Discrete-time LQG dynamic controller design using plant Markov parameters , 1995, Autom..

[26]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[27]  Dennis S. Bernstein,et al.  Experiment a1 Comparison of Adaptive Cancellat ion Algorithms for Active Noise Control , 1997 .

[28]  Marc Bodson,et al.  Design of adaptive feedforward algorithms using internal model equivalence , 1995 .

[29]  R. Venugopal,et al.  Experimental comparison of adaptive cancellation algorithms for active noise control , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.