A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots

An efficient probabilistic algorithm for the concurrent mapping and localization problem that arises in mobile robotics is presented. The algorithm addresses the problem in which a team of robots builds a map on-line while simultaneously accommodating errors in the robots’ odometry. At the core of the algorithm is a technique that combines fast maximum likelihood map growing with a Monte Carlo localizer that uses particle representations. The combination of both yields an on-line algorithm that can cope with large odometric errors typically found when mapping environments with cycles. The algorithm can be implemented in a distributed manner on multiple robot platforms, enabling a team of robots to cooperatively generate a single map of their environment. Finally, an extension is described for acquiring three-dimensional maps, which capture the structure and visual appearance of indoor environments in three dimensions.

[1]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[2]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[3]  Wolfram Burgard,et al.  Collaborative multi-robot exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Wolfgang D. Rencken,et al.  Concurrent localisation and map building for mobile robots using ultrasonic sensors , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[5]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[6]  Wolfram Burgard,et al.  Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM , 1999, ICML.

[7]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[8]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[9]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[10]  Maja J. Mataric,et al.  Interaction and intelligent behavior , 1994 .

[11]  Kurt Konolige,et al.  Visually Realistic Mapping of a Planar Environment with Stereo , 2000, ISER.

[12]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Hugh F. Durrant-Whyte,et al.  A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[15]  Kurt Konolige,et al.  Mobile robot sense net , 1999, Optics East.

[16]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[17]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[18]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[19]  Alberto Elfes,et al.  Occupancy grids: a probabilistic framework for robot perception and navigation , 1989 .

[20]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[21]  P. S. Maybeck,et al.  The Kalman Filter: An Introduction to Concepts , 1990, Autonomous Robot Vehicles.

[22]  Stuart J. Russell,et al.  Stochastic simulation algorithms for dynamic probabilistic networks , 1995, UAI.

[23]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[24]  Martin Abba Tanner,et al.  Tools for Statistical Inference: Observed Data and Data Augmentation Methods , 1993 .

[25]  Leslie Pack Kaelbling,et al.  Learning Hidden Markov Models with Geometric Information , 1997 .

[26]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[27]  Thomas Dean,et al.  1992 AAAI Robot Exhibition and Competition , 1993, AI Mag..

[28]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[29]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[30]  Paul Debevec,et al.  Modeling and Rendering Architecture from Photographs , 1996, SIGGRAPH 1996.

[31]  Illah R. Nourbakhsh,et al.  An Affective Mobile Robot Educator with a Full-Time Job , 1999, Artif. Intell..

[32]  Johannes Reuter Mobile robot self-localization using PDAB , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[33]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[34]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[35]  Mei Han,et al.  Interactive construction of 3D models from panoramic mosaics , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[36]  P. Boulanger,et al.  Sensor based creation of indoor virtual environment models , 1997, Proceedings. International Conference on Virtual Systems and MultiMedia VSMM '97 (Cat. No.97TB100182).

[37]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[38]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[39]  Uwe R. Zimmer,et al.  Robust world-modelling and navigation in a real world , 1996, Neurocomputing.

[40]  Raja Chatila,et al.  Stochastic multisensory data fusion for mobile robot location and environment modeling , 1989 .

[41]  Randall D. Beer,et al.  Spatial learning for navigation in dynamic environments , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[42]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[43]  Sebastian Thrun,et al.  Exploration and model building in mobile robot domains , 1993, IEEE International Conference on Neural Networks.

[44]  Maja J. Matarić,et al.  A Distributed Model for Mobile Robot Environment-Learning and Navigation , 1990 .

[45]  Gerhard Weiss,et al.  A map based on laserscans without geometric interpretation , 1999 .

[46]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[47]  Ioannis Stamos,et al.  Integration of range and image sensing for photo-realistic 3D modeling , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[48]  Leslie Pack Kaelbling,et al.  Learning models for robot navigation , 1999 .

[49]  José del R. Millán Robot Navigation , 2019 .

[50]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[51]  Sebastian Thrun,et al.  Probabilistic Algorithms in Robotics , 2000, AI Mag..

[52]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[53]  V. Michael Bove,et al.  Semiautomatic 3-D model extraction from uncalibrated 2-D camera views , 1995 .

[54]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[55]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[56]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[57]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[58]  Jochen S. Gutmann Vergleich von algorithmen zur selbstlokalisierung eines mobilen roboters , 1996 .

[59]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[60]  Leslie Pack Kaelbling,et al.  Learning Topological Maps with Weak Local Odometric Information , 1997, IJCAI.

[61]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[62]  John J. Leonard,et al.  A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization , 2000 .

[63]  Howie Choset,et al.  Sensor based motion planning: the hierarchical generalized Voronoi graph , 1996 .

[64]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1997, J. Intell. Robotic Syst..

[65]  Wolfram Burgard,et al.  Using EM to Learn 3D Models of Indoor Environments with Mobile Robots , 2001, ICML.

[66]  Ian Horswill,et al.  Specialization of perceptual processes , 1993 .

[67]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[68]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..

[69]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[70]  Benjamin Kuipers,et al.  Learning to Explore and Build Maps , 1994, AAAI.

[71]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[72]  Pat Langley,et al.  MAGELLAN: An Integrated Adaptive Architecture for Mobile Robotics , 1998 .

[73]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[74]  Hugh F. Durrant-Whyte,et al.  A Bayesian Algorithm for Simultaneous Localisation and Map Building , 2001, ISRR.

[75]  Mark C. Torrance,et al.  Natural communication with robots , 1994 .

[76]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1992 .

[77]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[78]  Daphne Koller,et al.  Using Learning for Approximation in Stochastic Processes , 1998, ICML.

[79]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[80]  Drew McDermott,et al.  Error correction in mobile robot map learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[81]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[82]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[83]  Wolfram Burgard,et al.  Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..

[84]  Wolfram Burgard,et al.  Coordination for Multi-Robot Exploration and Mapping , 2000, AAAI/IAAI.

[85]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[86]  Eric P. Fox Bayesian Statistics 3 , 1991 .

[87]  Carl F. R. Weiman,et al.  Helpmate autonomous mobile robot nav-igation system , 1991 .

[88]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[89]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[90]  Raja Chatila,et al.  An Experimental System for Incremental Environment Modelling by an Autonomous Mobile Robot , 1989, ISER.

[91]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .