Design and recovery of 2-D and 3-D shapes using rational Gaussian curves and surfaces

A new representation for parametric curves and surfaces is introduced here. It is in rational form and uses rational Gaussian bases. This representation allows design of 2-D and 3-D shapes, and makes recovery of shapes from noisy image data possible. The standard deviations of Gaussians in a curve or surface control the smoothness of a recovered shape. The control points of a surface in this representation are not required to form a regular grid and a scattered set of control points is sufficient to reconstruct a surface. Examples of shape design, shape recovery, and image segmentation using the proposed representation are given.

[1]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[2]  R. Bajcsy,et al.  A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. , 1983, Journal of computer assisted tomography.

[3]  Bir Bhanu,et al.  CAGD based 3-D vision , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[4]  Gerald E. Farin,et al.  From conics to NURBS: A tutorial and survey , 1992, IEEE Computer Graphics and Applications.

[5]  G. Farin NURBS for Curve and Surface Design , 1991 .

[6]  S. D. Yanowitz,et al.  A new method for image segmentation , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[7]  P. Besl Geometric modeling and computer vision , 1988, Proc. IEEE.

[8]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[9]  Steven W. Zucker,et al.  A Three-Dimensional Edge Operator , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Ernest L. Hall,et al.  Measuring Curved Surfaces for Robot Vision , 1982, Computer.

[11]  R. Fisher,et al.  Curve Fitting , 1936, Nature.

[12]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[13]  A. Ardeshir Goshtasby,et al.  Matching of tomographic slices for interpolation , 1992, IEEE Trans. Medical Imaging.

[14]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[15]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[16]  Richard H. Bartels,et al.  Interpolating splines with local tension, continuity, and bias control , 1984, SIGGRAPH.

[17]  E. T. Y. Lee,et al.  Choosing nodes in parametric curve interpolation , 1989 .

[18]  R. Fisher SMS: a suggestive modelling system for object recognition , 1987, Image Vis. Comput..

[19]  John Porrill,et al.  Matching geometrical descriptions in three-space , 1987, Image Vis. Comput..

[20]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Charles R. Dyer,et al.  Model-based recognition in robot vision , 1986, CSUR.

[23]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[24]  Fuhua Cheng,et al.  B-spline curves and surfaces viewed as digital filters , 1990, Comput. Vis. Graph. Image Process..

[25]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  C. Chow,et al.  Automatic boundary detection of the left ventricle from cineangiograms. , 1972, Computers and biomedical research, an international journal.

[27]  Chia-Hsiang Menq,et al.  Parameter optimization in approximating curves and surfaces to measurement data , 1991, Comput. Aided Geom. Des..

[28]  Anil K. Jain,et al.  Recognizing geons from superquadrics fitted to range data , 1992, Image Vis. Comput..

[29]  J. A. Gregory The Mathematics of Surfaces. , 1987 .

[30]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[31]  Denis Laurendeau,et al.  Model building of three-dimensional polyhedral objects using 3D edge information and hemispheric histogram , 1987, IEEE Journal on Robotics and Automation.

[32]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[33]  W. Eric L. Grimson,et al.  An implementation of a computational theory of visual surface interpolation , 1983, Comput. Vis. Graph. Image Process..

[34]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[35]  K. Sugihara Machine interpretation of line drawings , 1986, MIT Press series in artificial intelligence.

[36]  Takeshi Kiyono,et al.  Curve Fitting by a One-Pass Method With a Piecewise Cubic Polynomial , 1977, TOMS.

[37]  I. P. Schagen The use of stochastic processes in interpolation and approximation , 1980 .

[38]  Jean Ponce,et al.  Invariant Properties of Straight Homogeneous Generalized Cylinders and Their Contours , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Rodney A. Brooks,et al.  Model-Based Three-Dimensional Interpretations of Two-Dimensional Images , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Tony DeRose,et al.  A multisided generalization of Bézier surfaces , 1989, TOGS.

[41]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1992, Image Vis. Comput..

[42]  Thomas O. Binford,et al.  Computer Description of Curved Objects , 1973, IEEE Transactions on Computers.

[43]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[44]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[45]  W. J. Gordon,et al.  Bernstein-Bézier Methods for the Computer-Aided Design of Free-Form Curves and Surfaces , 1974, JACM.

[46]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Ramakant Nevatia,et al.  Description and Recognition of Curved Objects , 1977, Artif. Intell..

[48]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Tamás Várady Survey and new results in n-sided patch generation , 1987 .

[50]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[51]  Tony P. Pridmore,et al.  Geometrical Modeling from Multiple Stereo Views , 1989, Int. J. Robotics Res..

[52]  A. Ardeshir Goshtasby,et al.  Surface fitting to scattered data by a sum of Gaussians , 1993, Comput. Aided Geom. Des..

[53]  Azriel Rosenfeld,et al.  Techniques for 3-D machine perception , 1986 .

[54]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[55]  Alex Pentland,et al.  Automatic extraction of deformable part models , 1990, International Journal of Computer Vision.

[56]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[57]  Thomas O. Binford,et al.  Survey of Model-Based Image Analysis Systems , 1982 .

[58]  Robert J. Drazovich,et al.  Model Based Interpretation of 3-D Range Data , 1986 .

[59]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[60]  Yoshiaki Shirai Interpretation of Line Drawings , 1987 .

[61]  Hari B. Bidasaria Defining and rendering of textured objects through the use of exponential functions , 1992, CVGIP Graph. Model. Image Process..