Identification of Systems With Regime Switching and Unmodeled Dynamics

This paper is concerned with persistent identification of systems that involve deterministic unmodeled dynamics and stochastic observation disturbances, and whose unknown parameters switch values (possibly large jumps) that can be represented by a Markov chain. Two classes of problems are considered. In the first class, the switching parameters are stochastic processes modeled by irreducible and aperiodic Markov chains with transition rates sufficiently faster than adaptation rates of the identification algorithms. In this case, tracking real-time parameters by output observations becomes impossible and we show that an averaged behavior of the parameter process can be derived from the stationary measure of the Markov chain and can be estimated with periodic inputs and least-squares type algorithms. Upper and lower error bounds are established that explicitly show impact of unmodeled dynamics. In contrast, the second class of problems represents systems whose state transitions occur infrequently. An adaptive algorithm with variable step sizes is introduced for tracking the time-varying parameters. Convergence and error bounds are derived. Numerical results are presented to illustrate the performance of the algorithm.

[1]  G. Zames,et al.  Fast identification n-widths and uncertainty principles for LTI and slowly varying systems , 1994, IEEE Trans. Autom. Control..

[2]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[3]  L. Ljung,et al.  Necessary and sufficient conditions for stability of LMS , 1997, IEEE Trans. Autom. Control..

[4]  Le Yi Wang,et al.  Identification Error Bounds and Asymptotic Distributions for Systems with Structural Uncertainties , 2006, J. Syst. Sci. Complex..

[5]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[6]  V. Krishnamurthy,et al.  Estimation of Markov-modulated time-series via EM algorithm , 1994, IEEE Signal Processing Letters.

[7]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[8]  R. Tempo,et al.  Optimal algorithms theory for robust estimation and prediction , 1985 .

[9]  Le Yi Wang,et al.  Persistent identification of systems with unmodeled dynamics and exogenous disturbances , 2000, IEEE Trans. Autom. Control..

[10]  Le Yi Wang,et al.  Closed-loop persistent identification of linear systems with unmodeled dynamics and stochastic disturbances , 2002, Autom..

[11]  H. Kushner,et al.  Analysis of adaptive step-size SA algorithms for parameter tracking , 1995, IEEE Trans. Autom. Control..

[12]  U. Holst,et al.  Recursive estimation in switching autoregressions with Markov regime , 1994 .

[13]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[14]  B. Leroux Maximum-likelihood estimation for hidden Markov models , 1992 .

[15]  E. Kamen,et al.  Control of slowly-varying linear systems , 1989 .

[16]  Gang George Yin,et al.  Regime Switching Stochastic Approximation Algorithms with Application to Adaptive Discrete Stochastic Optimization , 2004, SIAM J. Optim..

[17]  J. Kingman A FIRST COURSE IN STOCHASTIC PROCESSES , 1967 .

[18]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[19]  Pierre Priouret,et al.  Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.

[20]  Han-Fu Chen,et al.  Identification and Stochastic Adaptive Control , 1991 .

[21]  L. Wang Persistent identification of time-varying systems , 1997, IEEE Trans. Autom. Control..

[22]  L. Y. Wang,et al.  Local-global double algebras for slow H/sup infinity / adaptation. I. Inversion and stability , 1991 .

[23]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[24]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[25]  Gang George Yin,et al.  Spreading code optimization and adaptation in CDMA via discrete stochastic approximation , 2004, IEEE Transactions on Information Theory.

[26]  Xuan Kong,et al.  Adaptive Signal Processing Algorithms: Stability and Performance , 1994 .

[27]  G. Yin,et al.  Discrete-Time Markov Chains: Two-Time-Scale Methods and Applications , 2004 .

[28]  Gang George Yin,et al.  Least mean square algorithms with Markov regime-switching limit , 2005, IEEE Transactions on Automatic Control.

[29]  J. Brossier Egalisation adaptative et estimation de phase : application aux communications sous-marines , 1992 .

[30]  Lennart Ljung,et al.  Frequency domain tracking characteristics of adaptive algorithms , 1989, IEEE Trans. Acoust. Speech Signal Process..

[31]  L. Gerencsér,et al.  Recursive estimation of Hidden Markov Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[33]  C. Desoer Slowly varying discrete system xi+1=Aixi , 1970 .

[34]  Gang George Yin,et al.  LMS algorithms for tracking slow Markov chains with applications to hidden Markov estimation and adaptive multiuser detection , 2005, IEEE Transactions on Information Theory.

[35]  Gang George Yin,et al.  Adaptive step-size algorithms for blind interference suppression in DS/CDMA systems , 2001, IEEE Trans. Signal Process..

[36]  Lennart Ljung,et al.  Performance analysis of general tracking algorithms , 1995 .

[37]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[38]  Antonio Vicino,et al.  Information-Based Complexity and Nonparametric Worst-Case System Identification , 1993, J. Complex..

[39]  Neri Merhav,et al.  Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.

[40]  Munther A. Dahleh,et al.  On slowly time-varying systems , 1991, Autom..

[41]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .