Convex shape decomposition

In this paper, we propose a new shape decomposition method, called convex shape decomposition. We formalize the convex decomposition problem as an integer linear programming problem, and obtain approximate optimal solution by minimizing the total cost of decomposition under some concavity constraints. Our method is based on Morse theory and combines information from multiple Morse functions. The obtained decomposition provides a compact representation, both geometrical and topological, of original object. Our experiments show that such representation is very useful in many applications.

[1]  Nancy M. Amato,et al.  Approximate convex decomposition of polygons , 2004, SCG '04.

[2]  Jarek Rossignac,et al.  Blowing Bubbles for Multi-Scale Analysis and Decomposition of Triangle Meshes , 2003, Algorithmica.

[3]  Donald D. Hoffman,et al.  Parsing silhouettes: The short-cut rule , 1999, Perception & psychophysics.

[4]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[5]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[6]  Donald D. Hoffman,et al.  Salience of visual parts , 1997, Cognition.

[7]  Tiow Seng Tan,et al.  Decomposing polygon meshes for interactive applications , 2001, I3D '01.

[8]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[9]  J. Rossignac,et al.  Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies , 2004, SM '04.

[10]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2004, Discret. Comput. Geom..

[11]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra , 2007, Symposium on Solid and Physical Modeling.

[12]  Kaleem Siddiqi,et al.  Parts of visual form: computational aspects , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Martin D. Levine,et al.  3D Part Segmentation Using Simulated Electrical Charge Distributions , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[15]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[16]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[17]  Longin Jan Latecki,et al.  Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution , 1999, Comput. Vis. Image Underst..

[18]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[19]  Xiaofeng Mi,et al.  Separating Parts from 2D Shapes using Relatability , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[20]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.