Quantum α-fidelity of unitary orbits

The extremum values of quantum $$\alpha $$ -fidelity under unitary orbits of quantum states are explicitly derived by applying rearrangement inequalities, matrix trace inequalities, and theory of majorization. Furthermore, the $$\alpha $$ -fidelity is successfully verified to go through the whole closed interval, which works from the minimum value to the maximum value.

[1]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[2]  A. Baker Matrix Groups: An Introduction to Lie Group Theory , 2003 .

[3]  Nicolas Gisin,et al.  Imperfect measurement settings: Implications for quantum state tomography and entanglement witnesses , 2012, 1203.0911.

[4]  Mario Berta,et al.  Multivariate Trace Inequalities , 2016, ArXiv.

[5]  D. Spehner Quantum correlations and distinguishability of quantum states , 2014, 1407.3739.

[6]  Lin Chen,et al.  Fidelity between one bipartite quantum state and another undergoing local unitary dynamics , 2015, Quantum Inf. Process..

[7]  C. Thompson Inequality with Applications in Statistical Mechanics , 1965 .

[8]  Stefano Pirandola,et al.  A limit formula for the quantum fidelity , 2012, 1204.2473.

[9]  Wasin So The high road to an exponential formula , 2004 .

[10]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[11]  S. Fei,et al.  Quantum fidelity and relative entropy between unitary orbits , 2013, 1305.1472.

[12]  G. Pólya,et al.  Inequalities (Cambridge Mathematical Library) , 1934 .

[13]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[14]  K. Audenaert,et al.  α-z-Rényi relative entropies , 2015 .

[15]  K. Audenaert,et al.  alpha-z-relative Renyi entropies , 2013, 1310.7178.

[16]  E. Carlen TRACE INEQUALITIES AND QUANTUM ENTROPY: An introductory course , 2009 .

[17]  S. Gu Fidelity approach to quantum phase transitions , 2008, 0811.3127.

[18]  R. Bhatia Matrix Analysis , 1996 .

[19]  David Jennings,et al.  Quantum mutual information along unitary orbits , 2012 .

[20]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[21]  A. Rényi On Measures of Entropy and Information , 1961 .

[22]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .