The human visual system is optimised for processing the spatial information in natural visual images

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[3]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[4]  D. Tolhurst,et al.  On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  L N Piotrowski,et al.  A Demonstration of the Visual Importance and Flexibility of Spatial-Frequency Amplitude and Phase , 1982, Perception.

[6]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[8]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[9]  S. Laughlin,et al.  Matching Coding to Scenes to Enhance Efficiency , 1983 .

[10]  G. J. Burton,et al.  Color and spatial structure in natural scenes. , 1987, Applied optics.

[11]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[12]  Denis G. Pelli,et al.  Accurate control of contrast on microcomputer displays , 1991, Vision Research.

[13]  R. Gregory,et al.  Evolution of the Eye and Visual System , 1991 .

[14]  D. Tolhurst,et al.  Amplitude spectra of natural images. , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[15]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[16]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[17]  D. Tolhurst,et al.  Discrimination of changes in the second-order statistics of natural and synthetic images , 1994, Vision Research.

[18]  Philip J. Benson,et al.  Morph transformation of the facial image , 1994, Image Vis. Comput..

[19]  Simon B. Laughlin,et al.  Visual ecology and voltage-gated ion channels in insect photoreceptors , 1995, Trends in Neurosciences.

[20]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[21]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[22]  David H. Foster,et al.  Role of second- and third-order statistics in the discriminability of natural images , 1997 .

[23]  S. B. Laughlin,et al.  Modelling the variation in the contrast of natural scenes, and the function of contrast normalization in the mammalian visual cortex , 1997 .

[24]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .