Strengthened monotonicity of relative entropy via pinched Petz recovery map
暂无分享,去创建一个
[1] D. Reeb,et al. Monotonicity of the Quantum Relative Entropy Under Positive Maps , 2015, 1512.06117.
[2] D. Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra , 1986 .
[3] R. Renner,et al. Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.
[4] Josip Pecaric,et al. Jensen's operator inequality and its converses , 2006 .
[5] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .
[6] M. Hayashi. Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.
[7] Andreas Winter,et al. Squashed Entanglement, k-Extendibility, Quantum Markov Chains, and Recovery Maps , 2018 .
[8] C. Fuchs. Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.
[9] R. Bhatia. Positive Definite Matrices , 2007 .
[10] Aram W. Harrow,et al. Strengthened monotonicity of relative entropy via pinched Petz recovery map , 2015, 2016 IEEE International Symposium on Information Theory (ISIT).
[11] Mario Berta,et al. Monotonicity of quantum relative entropy and recoverability , 2014, Quantum Inf. Comput..
[12] E. Carlen. TRACE INEQUALITIES AND QUANTUM ENTROPY: An introductory course , 2009 .
[13] M. Wolf,et al. Positivity of linear maps under tensor powers , 2015, 1502.05630.
[14] Mark M. Wilde,et al. Fidelity of recovery, geometric squashed entanglement, and measurement recoverability , 2014, 1410.1441.
[15] P. Malliavin. Infinite dimensional analysis , 1993 .
[16] Fernando G S L Brandão,et al. Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.
[17] Mario Berta,et al. Multivariate Trace Inequalities , 2016, ArXiv.
[18] Mario Berta,et al. On variational expressions for quantum relative entropies , 2015, ArXiv.
[19] Serge Fehr,et al. On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.
[20] M. Hayashi. Asymptotics of quantum relative entropy from a representation theoretical viewpoint , 1997, quant-ph/9704040.
[21] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[22] Mark M. Wilde,et al. Recoverability in quantum information theory , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[23] Tetsunao Matsuta,et al. 国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .
[24] E. Lieb,et al. Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .
[25] M. Sion. On general minimax theorems , 1958 .
[26] Dénes Petz,et al. A variational expression for the relative entropy , 1988 .
[27] 林 正人. Quantum information : an introduction , 2006 .
[28] G. Lindblad. Completely positive maps and entropy inequalities , 1975 .
[29] Andreas Winter,et al. Squashed Entanglement, $$\mathbf {k}$$k-Extendibility, Quantum Markov Chains, and Recovery Maps , 2014, 1410.4184.
[30] Mario Berta,et al. The Fidelity of Recovery Is Multiplicative , 2015, IEEE Transactions on Information Theory.
[31] F. Hansen,et al. Jensen's Operator Inequality , 2002, math/0204049.
[32] Chandler Davis,et al. A Schwarz inequality for convex operator functions , 1957 .
[33] E. Lieb,et al. A Fundamental Property of Quantum-Mechanical Entropy , 1973 .
[34] A. Lichnerowicz. Proof of the Strong Subadditivity of Quantum-Mechanical Entropy , 2018 .
[35] Man-Duen Choi. A schwarz inequality for positive linear maps on $C^{\ast}$-algebras , 1974 .
[36] D. Petz. SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS , 1988 .
[37] Omar Fawzi,et al. Universal recovery map for approximate Markov chains , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[38] M. Piani. Relative entropy of entanglement and restricted measurements. , 2009, Physical review letters.
[39] F. Hiai,et al. The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .
[40] D. Petz. Quantum Information Theory and Quantum Statistics , 2007 .
[41] D. Petz. Monotonicity of quantum relative entropy revisited , 2002, quant-ph/0209053.