to Resonators Under In Vivo-Like Conditions Pyramidal Neurons Switch From Integrators In Vitro

[1]  Y. Koninck,et al.  Impact of Background Synaptic Activity on Neuronal Response Properties Revealed by Stepwise Replication of In Vivo-Like Conditions In Vitro , 2009 .

[2]  Boris S. Gutkin,et al.  The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons , 2009, Journal of Computational Neuroscience.

[3]  Terrence J. Sejnowski,et al.  Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation , 2008, PLoS Comput. Biol..

[4]  Wendy W. Wu,et al.  Coupling of L-type Ca2+ channels to KV7/KCNQ channels creates a novel, activity-dependent, homeostatic intrinsic plasticity. , 2008, Journal of neurophysiology.

[5]  John A White,et al.  Artificial Synaptic Conductances Reduce Subthreshold Oscillations and Periodic Firing in Stellate Cells of the Entorhinal Cortex , 2008, The Journal of Neuroscience.

[6]  David Golomb,et al.  Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons , 2007, PLoS Comput. Biol..

[7]  Takashi Tateno,et al.  Quantifying noise-induced stability of a cortical fast-spiking cell model with Kv3-channel-like current , 2007, Biosyst..

[8]  Angelo Di Garbo,et al.  The synchronization properties of a network of inhibitory interneurons depend on the biophysical model , 2007, Biosyst..

[9]  Stéphanie Ratté,et al.  Nonlinear Interaction between Shunting and Adaptation Controls a Switch between Integration and Coincidence Detection in Pyramidal Neurons , 2006, The Journal of Neuroscience.

[10]  G. Buzsáki Rhythms of the brain , 2006 .

[11]  Alla Borisyuk,et al.  UNDERSTANDING NEURONAL DYNAMICS BY GEOMETRICAL DISSECTION OF MINIMAL MODELS , 2005 .

[12]  Nicolas Brunel,et al.  Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. , 2005, Journal of neurophysiology.

[13]  A. Destexhe,et al.  Synaptic background activity controls spike transfer from thalamus to cortex , 2005, Nature Neuroscience.

[14]  Alan D Dorval,et al.  Channel Noise is Essential for Perithreshold Oscillations in Entorhinal Stellate Neurons , 2005, The Journal of Neuroscience.

[15]  J. Lynch,et al.  Liquid junction potentials and small cell effects in patch-clamp analysis , 1991, The Journal of Membrane Biology.

[16]  H. Robinson,et al.  Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: type 1 and type 2 dynamics. , 2004, Journal of neurophysiology.

[17]  U. Heinemann,et al.  Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold , 2004, The Journal of physiology.

[18]  Irina Erchova,et al.  Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. , 2004, Journal of neurophysiology.

[19]  Michael Rudolph,et al.  Tuning Neocortical Pyramidal Neurons between Integrators and Coincidence Detectors , 2003, Journal of Computational Neuroscience.

[20]  Eve Marder,et al.  Reduction of conductance-based neuron models , 1992, Biological Cybernetics.

[21]  M. Steriade Acetylcholine systems and rhythmic activities during the waking--sleep cycle. , 2004, Progress in brain research.

[22]  D. Hansel,et al.  How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs , 2003, The Journal of Neuroscience.

[23]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[24]  Germán Mato,et al.  Electrical Synapses and Synchrony: The Role of Intrinsic Currents , 2003, The Journal of Neuroscience.

[25]  S. Prescott,et al.  Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Storm,et al.  Two forms of electrical resonance at theta frequencies, generated by M‐current, h‐current and persistent Na+ current in rat hippocampal pyramidal cells , 2002, The Journal of physiology.

[27]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[28]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[29]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[30]  A. Szücs,et al.  Extended dynamic clamp: controlling up to four neurons using a single desktop computer and interface , 2001, Journal of Neuroscience Methods.

[31]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[32]  Boris S. Gutkin,et al.  The Effects of Spike Frequency Adaptation and Negative Feedback on the Synchronization of Neural Oscillators , 2001, Neural Computation.

[33]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[34]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[35]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[36]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[37]  H. Wilson Simplified dynamics of human and mammalian neocortical neurons. , 1999, Journal of theoretical biology.

[38]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[39]  L. S. Leung,et al.  Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. , 1998, Journal of neurophysiology.

[40]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[41]  I. Lampl,et al.  Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism , 1997, Neuroscience.

[42]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[43]  M. Gutnick,et al.  Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. , 1996, Journal of neurophysiology.

[44]  R. Miura,et al.  Models of subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[45]  D. Gillespie The mathematics of Brownian motion and Johnson noise , 1996 .

[46]  Germán Mato,et al.  Synchrony in Excitatory Neural Networks , 1995, Neural Computation.

[47]  L. Glass,et al.  Understanding Nonlinear Dynamics , 1995 .

[48]  C. Koch,et al.  Synaptic background activity influences spatiotemporal integration in single pyramidal cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C. Y. Yim,et al.  Intrinsic membrane potential oscillations in hippocampal neurons in vitro , 1991, Brain Research.

[50]  R. Traub,et al.  Neuronal Networks of the Hippocampus , 1991 .

[51]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[52]  H. Wigström,et al.  Shape of frequency-current curves in CAI pyramidal cells in the hippocampus , 1981, Brain Research.

[53]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[54]  A. Hodgkin The local electric changes associated with repetitive action in a non‐medullated axon , 1948, The Journal of physiology.