Efficient Recruitment of Layer 2/3 Interneurons by Layer 4 Input in Single Columns of Rat Somatosensory Cortex

Interneurons in layers 2/3 are excited by pyramidal cells within the same layer (Reyes et al., 1998; Gupta et al., 2000), but little is known about translaminar innervation of these interneurons by spiny neurons in the main cortical input layer 4 (L4). Here, we investigated (1) how efficiently L4 spiny neurons excite L2/3 interneurons via monosynaptic connections, (2) whether glutamate release from axon terminals of L4 spiny neurons depends on the identity of the postsynaptic interneuron, and (3) how L4-to-L2/3 interneuron connections compare with L4-to-L2/3 pyramidal neuron connections. We recorded from pairs of L4 spiny neurons and L2/3 interneurons in acute slices of rat barrel cortex of postnatal day 20 (P20) to P29 rats. The L4-to-L2/3 interneuron connections had an average unitary EPSP of 1.2 ± 1.1 mV. We found an average of 2.3 ± 0.8 contacts per connection, and the L4-to-L2/3 interneuron innervation domains were mostly column restricted. Unitary EPSP amplitudes and paired-pulse ratios in the L4-to-L2/3 interneuron connections depended on the “group” of the postsynaptic interneuron. Averaged over all L4-to-L2/3 interneuron connections, unitary EPSP amplitudes were 1.8-fold higher than in the translaminar L4-to-L2/3 pyramidal cell connections. Our results suggest that L4 spiny neurons may more efficiently recruit L2/3 interneurons than L2/3 pyramidal neurons, and that glutamate release from translaminar boutons of L4 spiny neuron axons is target cell specific.

[1]  M. Marín‐padilla Double origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. , 1969, Brain research.

[2]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[3]  A Grinvald,et al.  Visualization of the spread of electrical activity in rat hippocampal slices by voltage‐sensitive optical probes , 1982, The Journal of physiology.

[4]  S. Mennerick,et al.  Action potential fidelity during normal and epileptiform activity in paired soma–axon recordings from rat hippocampus , 2005, The Journal of physiology.

[5]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[6]  K. Zilles,et al.  Distribution of GABAergic Elements Postsynaptic to Ventroposteromedial Thalamic Projections in Layer IV of Rat Barrel Cortex , 1996, The European journal of neuroscience.

[7]  Bert Sakmann,et al.  Monosynaptic Connections between Pairs of Spiny Stellate Cells in Layer 4 and Pyramidal Cells in Layer 5A Indicate That Lemniscal and Paralemniscal Afferent Pathways Converge in the Infragranular Somatosensory Cortex , 2005, The Journal of Neuroscience.

[8]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[9]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[10]  T I Tóth,et al.  The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones , 1997, The Journal of physiology.

[11]  Moritz Helmstaedter,et al.  L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. , 2009, Cerebral cortex.

[12]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[13]  R. Kötter,et al.  Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits , 2007, Brain Structure and Function.

[14]  N. Seidah,et al.  Regulation by gastric acid of the processing of progastrin‐derived peptides in rat antral mucosa , 1997, The Journal of physiology.

[15]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[16]  C. Beaulieu,et al.  Numerical data on neocortical neurons in adult rat, with special reference to the GABA population , 1993, Brain Research.

[17]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[18]  Karel Svoboda,et al.  Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs , 2004, Nature Neuroscience.

[19]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[20]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[21]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[22]  H. Dodt,et al.  Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy , 1990, Brain Research.

[23]  B W Connors,et al.  Inhibitory control of excitable dendrites in neocortex. , 1995, Journal of neurophysiology.

[24]  P. Andersen,et al.  Functional characteristics of unmyelinated fibres in the hippocampal cortex , 1978, Brain Research.

[25]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[26]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[27]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[28]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[29]  B. Connors,et al.  THALAMOCORTICAL SYNAPSES , 1997, Progress in Neurobiology.

[30]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[31]  P. Somogyi,et al.  Massive Autaptic Self-Innervation of GABAergic Neurons in Cat Visual Cortex , 1997, The Journal of Neuroscience.

[32]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[33]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[34]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[35]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[36]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[37]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[38]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[39]  Moritz Helmstaedter,et al.  The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. , 2009, Cerebral cortex.

[40]  E. White,et al.  A comparison of thalamocortical and other synaptic inputs to dendrites of two non‐spiny neurons in a single barrel of mouse SmI cortex , 1981, The Journal of comparative neurology.

[41]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[42]  Randy M Bruno,et al.  Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. , 2008, Cerebral cortex.

[43]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[44]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[45]  P. Somogyi,et al.  Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. , 1997, The Journal of physiology.

[46]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[47]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[48]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[49]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[50]  P. Somogyi,et al.  A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells , 1983, Brain Research.

[51]  G. Knott,et al.  Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period , 2004, The Journal of Neuroscience.

[52]  M. Marín‐padilla Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. , 1969, Brain research.

[53]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Harvey A Swadlow,et al.  Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  Morten Raastad,et al.  Conduction latency along CA3 hippocampal axons from rat , 2003, Hippocampus.

[56]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[57]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[58]  J. Lübke,et al.  Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex , 2007, Brain Structure and Function.

[59]  R. Kötter,et al.  Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast‐spiking interneurons in infragranular layers of juvenile rat neocortex , 2002, The European journal of neuroscience.

[60]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[61]  H. Killackey Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. , 1973, Brain research.

[62]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[63]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[64]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[65]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[66]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[67]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[68]  Daniel E Feldman,et al.  Development of Columnar Topography in the Excitatory Layer 4 to Layer 2/3 Projection in Rat Barrel Cortex , 2003, The Journal of Neuroscience.