Statistics of Natural Image Geometry

In computer vision and image analysis the task is to make inference about images. We want to develop algorithms that map input, consisting of one or more images, into a description of the physical world the images depict. From such descriptions, we want to deduce some information that lets us solve a certain task or problem, such as the problem of making a robotic car capable of driving autonomously in heavy traffic. This thesis focuses on solutions to general problems in computer vision and image analysis, and it consists of two separate parts, each representing an independent track of research. The first part focuses on building probabilistic models of images and how to apply such models in the solution of computer vision problems. It is argued that the Brownian image model, and to some extend the fractional Brownian model, is a good model of the second order statistics of natural images, since this model captures the scale invariant covariance structure of natural images. The fractional Brownian model is used in the derivation of a scale normalization of image derivatives used in a scale selection approach originally proposed by Lindeberg (1998). A study is also made of the statistics of local image structure in natural images, where the goal is to model probability distributions of local features. In this thesis I settle for estimating the marginal distribution of edges and investigate how the local geometry of natural images distribute with respect to edges. Here local geometry is either represented by the intensity values in a 3×3 pixel neighborhood or by the local 3-jet of a linear scale-space representation. This study shows that the local structure of natural images has a scale invariant distribution around a manifold of edges in state space, which follows a power law. The second part of the thesis introduces a new algorithm for the analysis of motion of fluids and non-rigid bodies. I will present a multi-scale method for computation of optic flow fields. The optic flow field is extracted from normal flow, by fitting the normal components of a local polynomial model of the optic flow to the normal flow. This model fitting is based on an analytically solvable optimization problem, in which an integration scale-space of the normal flow field regularizes the solution. An automatic local scale selection mechanism is used in order to adapt to the intrinsic scale of the local flow structure. The performance profile of the method is compared with that of existing optic flow techniques on benchmark image sequences. The proposed method is also evaluated on a real sequence of smoke circulation in a pigsty. For more information see http://www.diku.dk/ ̃kimstp/thesis/

[1]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[2]  D. Geman,et al.  Invariant Statistics and Coding of Natural Microimages , 1998 .

[3]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  A. O'Hagan,et al.  Kendall's Advanced Theory of Statistics, Vol. 2b: Bayesian Inference. , 1996 .

[5]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[6]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[7]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[8]  Eero P. Simoncelli Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.

[9]  D. Field,et al.  Human discrimination of fractal images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[10]  Lewis D. Griffin,et al.  Natural image profiles are most likely to be step edges , 2004, Vision Research.

[11]  Jean-Michel Morel,et al.  Geometry and Color in Natural Images , 2002, Journal of Mathematical Imaging and Vision.

[12]  Alan L. Yuille,et al.  Fundamental Limits of Bayesian Inference: Order Parameters and Phase Transitions for Road Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Anuj Srivastava,et al.  Probability Models for Clutter in Natural Images , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Jia-An Yan,et al.  Introduction to Infinite Dimensional Stochastic Analysis , 2001 .

[15]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[16]  Harry Shum,et al.  Image segmentation by data driven Markov chain Monte Carlo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[17]  Mads Nielsen,et al.  The Hausdorff Dimension and Scale-Space Normalisation of Natural Images , 1999, Scale-Space.

[18]  Kim Steenstrup Pedersen,et al.  Toward a Full Probability Model of Edges in Natural Images , 2002, ECCV.

[19]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Tony Lindeberg,et al.  Scale selection for differential operators , 1994 .

[22]  P. Roman,et al.  Symmetry in Physics , 1969 .

[23]  Wiro J. Niessen,et al.  Optic Flow and Stereo , 1997, Gaussian Scale-Space Theory.

[24]  Anthony D. Worrall,et al.  Tracking with the EM Contour Algorithm , 2002, ECCV.

[25]  Kim Steenstrup Pedersen,et al.  The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003, International Journal of Computer Vision.

[26]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[27]  Anuj Srivastava,et al.  Universal Analytical Forms for Modeling Image Probabilities , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Jens Arnspang,et al.  Optic Acceleration , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[29]  Michael Isard,et al.  Object localization by Bayesian correlation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[30]  P Reinagel,et al.  Natural scene statistics at the centre of gaze. , 1999, Network.

[31]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[32]  Benny Lautrup,et al.  Brownian Warps: A Least Committed Prior for Non-rigid Registration , 2002, MICCAI.

[33]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[34]  S. Klinke,et al.  Exploratory Projection Pursuit , 1995 .

[35]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[36]  David Mumford,et al.  The Statistical Description of Visual Signals , 1996 .

[37]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[38]  Max A. Viergever,et al.  Linear scale-space , 1994, Journal of Mathematical Imaging and Vision.

[39]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[40]  Arthur E. C. Pece,et al.  The Problem of Sparse Image Coding , 2002, Journal of Mathematical Imaging and Vision.

[41]  H. Kalmus Biological Cybernetics , 1972, Nature.

[42]  Max A. Viergever,et al.  The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.

[43]  S. Mallat A wavelet tour of signal processing , 1998 .

[44]  R. Estrada,et al.  Introduction to the Theory of Distributions , 1994 .

[45]  Ann B. Lee Statistics, models and learning in BCM theory of a natural visual environment , 2002 .

[46]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[47]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[48]  Philip H. S. Torr,et al.  Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting , 2002, International Journal of Computer Vision.

[49]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[50]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[51]  Mads Nielsen,et al.  Computing Optic Flow by Scale-Space Integration of Normal Flow , 2001, Scale-Space.

[52]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[53]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[54]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[55]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[56]  N. Fazzalari,et al.  FRACTAL DIMENSION AND ARCHITECTURE OF TRABECULAR BONE , 1996, The Journal of pathology.

[57]  E. Gelsema,et al.  Estimation of fractal dimension in radiographs. , 1996, Medical physics.

[58]  Mads Nielsen From Paradigm to Algorithms in Computer Vision , 1995 .

[59]  E. Kretzmer Statistics of television signals , 1952 .

[60]  Ann B. Lee,et al.  The Complex Statistics of High-Contrast Patches in Natural Images , 2001 .

[61]  Luc Florack,et al.  Binocular Stereo from Grey-Scale Images , 1999, Journal of Mathematical Imaging and Vision.

[62]  Eero P. Simoncelli,et al.  Image compression via joint statistical characterization in the wavelet domain , 1999, IEEE Trans. Image Process..

[63]  R. Voss Random Fractal Forgeries , 1985 .

[64]  Tony Lindeberg,et al.  Linear Spatio-Temporal Scale-Space , 1997, Scale-Space.

[65]  Tony Lindeberg,et al.  Direct estimation of affine image deformations using visual front-end operations with automatic scale selection , 1995, Proceedings of IEEE International Conference on Computer Vision.

[66]  Yann Gousseau,et al.  Scales in Natural Images and a Consequence on their Bounded Variation Norm , 1999, Scale-Space.

[67]  Tony Lindeberg,et al.  Direct computation of shape cues using scale-adapted spatial derivative operators , 1996, International Journal of Computer Vision.

[68]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[69]  Mads Nielsen,et al.  The Structure of the Optic Flow Field , 1998, ECCV.

[70]  Luis Álvarez,et al.  The Size of Objects in Natural and Artificial Images , 1999 .

[71]  Tony Lindeberg Kth Scale-space: A framework for handling image structures at multiple scales , 1996 .

[72]  Song-Chun Zhu,et al.  Statistical Modeling of Texture Sketch , 2002, ECCV.

[73]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Michael J. Black,et al.  Learning image statistics for Bayesian tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[75]  Song-Chun Zhu,et al.  GRADE: Gibbs reaction and diffusion equations , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[76]  Peter Johansen Local Analysis of Image Scale Space , 1997, Gaussian Scale-Space Theory.

[77]  Bernhard Wegmann,et al.  Statistical dependence between orientation filter outputs used in a human-vision-based image code , 1990, Other Conferences.

[78]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[79]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[80]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[81]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[82]  Luc Florack,et al.  The Intrinsic Structure of Optic Flow Incorporating Measurement Duality , 1998, International Journal of Computer Vision.

[83]  Jia Jie Bayesian denoising of visual images in the wavelet domain , 2003 .

[84]  Jacques Lévy Véhel,et al.  Introduction to the Multifractal Analysis of Images , 1998 .

[85]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[86]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[87]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[88]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[89]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[90]  Rachid Deriche,et al.  Regularization, Scale-Space, and Edge Detection Filters , 1996, ECCV.

[91]  Yann Gousseau,et al.  Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..

[92]  M. Lifshits Gaussian Random Functions , 1995 .

[93]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[94]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[95]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[96]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[97]  Mads Nielsen,et al.  What Do Features Tell about Images? , 2001, Scale-Space.

[98]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[99]  Jitendra Malik,et al.  A Probabilistic Multi-scale Model for Contour Completion Based on Image Statistics , 2002, ECCV.

[100]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[101]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[102]  David Mumford,et al.  Statistics of range images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[103]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[104]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[106]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[107]  Scale-Space,et al.  Scale-space and morphology in computer vision : third International Conference, Scale-Space 2001, Vancouver, Canada, July 7-8, 2001 : proceedings , 2001 .

[108]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..