A Multiple Models Approach for Adaptation and Learning in Mobile Robots Control

The paper proposes a multiple models based control methodology for the solution of the tracking problem for mobile robots. The proposed method utilizes multiple models of the robot for its identification in an adaptive and learning control framework. Radial Basis Function Networks (RBFNs) are considered for the multiple models in order to exploit the non-linear approximation capabilities of the nets for modeling the kinematic behaviour of the vehicle and for reducing unmodelled tracking errors contributions. The training of the nets and the control performance analysis have been done in a real experimental setup. The experimental results are satisfactory in terms of tracking errors and computational efforts and show the improvement in the tracking performance when the proposed methodology is used for tracking tasks in dynamical uncertain environments.

[1]  Maria Letizia Corradini,et al.  Neural Networks Based Control of Mobile Robots: Development and Experimental Validation , 2003, J. Field Robotics.

[2]  Nader Sadegh A nodal link perceptron network with applications to control of a nonholonomic system , 1995, IEEE Trans. Neural Networks.

[3]  T Leo,et al.  A navigation system for increasing the autonomy and the security of powered wheelchairs. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[4]  Robert Sutton,et al.  Advances in Unmanned Marine Vehicles , 2006 .

[5]  G. A. Mihram,et al.  Simulation: Statistical Foundations and Methodology. , 1974 .

[6]  Sauro Longhi,et al.  Motion planning for unicycle and car-like robots , 1996, Int. J. Syst. Sci..

[7]  Sauro Longhi,et al.  Multiple models for adaptive control to improve the performance of minimum variance regulators , 2004 .

[8]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[9]  T. Poggio,et al.  Networks and the best approximation property , 1990, Biological Cybernetics.

[10]  A. D'Amico,et al.  A radial basis function networks approach for the tracking problem of mobile robots , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[11]  Sauro Longhi,et al.  Switching-based supervisory control of underwater vehicles , 2006 .

[12]  Jean-Jacques E. Slotine,et al.  Stable adaptive control and recursive identification using radial Gaussian networks , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[13]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot using neural networks , 1998, IEEE Trans. Neural Networks.

[14]  Henrik I. Christensen,et al.  Simultaneous localization and mapping in domestic environments , 2001, Conference Documentation International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI 2001 (Cat. No.01TH8590).

[15]  Jung-Min Yang,et al.  Sliding Mode Motion Control of Nonholonomic Mobile Robots , 1999 .

[16]  Simon X. Yang,et al.  A neural network controller for a nonholonomic mobile robot with unknown robot parameters , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  Bor-Sen Chen,et al.  A robust H ∞ model reference tracking design for non-holonomic mechanical control systems , 1996 .

[18]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[19]  G. Goodwin,et al.  Hysteresis switching adaptive control of linear multivariable systems , 1994, IEEE Trans. Autom. Control..

[20]  Carlos Canudas de Wit,et al.  NONLINEAR CONTROL DESIGN FOR MOBILE ROBOTS , 1994 .

[21]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.

[22]  Paolo Fiorini,et al.  A robotics wheelchair for crowded public environment , 2001, IEEE Robotics Autom. Mag..

[23]  Kevin Warwick,et al.  Dynamic Systems in Neural Networks , 1995 .

[24]  Weiliang Xu,et al.  Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots , 2000, IEEE Trans. Robotics Autom..

[25]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[26]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[27]  Mukhtiar Ali Unar,et al.  Automatic steering of ships using neural networks , 1999 .

[28]  Warren E. Dixon,et al.  Tracking and Regulation Control of a Mobile Robot System With Kinematic Disturbances: A Variable Structure-Like Approach , 2000 .

[29]  Frank L. Lewis,et al.  Model reference adaptive control of nonlinear dynamical systems using multilayer neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[30]  Maria Letizia Corradini,et al.  A Multiple-Model Based Approach for the Intelligent Control of Underwater Remotely Operated Vehicles , 1999 .

[31]  Sauro Longhi,et al.  Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..

[32]  R. M. Sanner,et al.  Function approximation, "neural" networks, and adaptive nonlinear control , 1994, 1994 Proceedings of IEEE International Conference on Control and Applications.

[33]  Manolis A. Christodoulou,et al.  Adaptive control of unknown plants using dynamical neural networks , 1994, IEEE Trans. Syst. Man Cybern..

[34]  Guy Campion,et al.  A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints , 2000, IEEE Trans. Robotics Autom..

[35]  Edson Roberto De Pieri,et al.  Feedforward control of a mobile robot using a neural network , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[36]  Marios M. Polycarpou,et al.  Adaptive bounding techniques for stable neural control systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[37]  Kimon P. Valavanis,et al.  Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic , 2001, IEEE Trans. Robotics Autom..

[38]  Sauro Longhi,et al.  Localization of a wheeled mobile robot by sensor data fusion based on a fuzzy logic adapted Kalman filter , 1998 .

[39]  Maria Letizia Corradini,et al.  Experimental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects , 2002, J. Field Robotics.

[40]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[41]  A. Stephen Morse,et al.  Control Using Logic-Based Switching , 1997 .

[42]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[43]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[44]  Oussama Khatib,et al.  Reactive collision avoidance for navigation with dynamic constraints , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..

[46]  Marios M. Polycarpou,et al.  Stable adaptive neural control scheme for nonlinear systems , 1996, IEEE Trans. Autom. Control..

[47]  Maria Letizia Corradini,et al.  Robust tracking control of mobile robots in the presence of uncertainties in the dynamical model , 2001, J. Field Robotics.

[48]  R. M. Sanner,et al.  Multiresolution radial basis function networks for the adaptive control of robotic systems , 1996 .

[49]  Chen-Chung Liu,et al.  Adaptively controlling nonlinear continuous-time systems using multilayer neural networks , 1994, IEEE Trans. Autom. Control..

[50]  Kumpati S. Narendra,et al.  Adaptive control of discrete-time systems using multiple models , 2000, IEEE Trans. Autom. Control..

[51]  Andrew A. Goldenberg,et al.  Neural-network control of mobile manipulators , 2001, IEEE Trans. Neural Networks.

[52]  Georges Bastin,et al.  Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization , 1995, Int. J. Robotics Res..

[53]  Kumpati S. Narendra,et al.  Nonlinear adaptive control using neural networks and multiple models , 2001, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[54]  P.A. Ioannou,et al.  Identification and control of aircraft dynamics using radial basis function networks , 1993, Proceedings of IEEE International Conference on Control and Applications.

[55]  Kostas J. Kyriakopoulos,et al.  An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments , 1993, Autom..

[56]  Roberto Kawakami Harrop Galvão,et al.  Adaptive control for mobile robot using wavelet networks , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[57]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[58]  Alessandro De Luca,et al.  Control of nonholonomic systems via dynamic compensation , 1993, Kybernetika.

[59]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[60]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[61]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[62]  Alain Pruski,et al.  An autonomous vehicle for people with motor disabilities , 2001, IEEE Robotics Autom. Mag..

[63]  Yuan F. Zheng,et al.  Recent Trends in Mobile Robots , 1994 .