Numerical calculation of the base inertial parameters of robots

This article presents a new approach to the problem of determining the minimum set of inertial parameters of robots. The calculation is based on numerical QR and SVD factorizations and on the scaling procedure of matrices. It proceeds in three steps: eliminate standard inertial parameters which have no effect on the dynamic model, determine the number of base parameters, and determine a set of base parameters by regrouping some standard parameters to some others in linear relations. Different models, linear in the inertial parameters are used: a complete dynamic model, a simplified dynamic model, and an energy model. The method is general, it can be applied to open loop, or graph-structured robots. The algorithms are easy to implement. An application for the PUMA 560 robot is given.

[1]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[2]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[3]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[4]  Oussama Khatib,et al.  The explicit dynamic model and inertial parameters of the PUMA 560 arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  Wisama Khalil,et al.  Reducing the computational burden of the dynamic models of robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[7]  M. W. Walker,et al.  Estimating the essential parameter space of the robot manipulator dynamics , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[8]  Fouad Bennis,et al.  Minimum inertial parameters of robots with parallelogram closed-loops , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[9]  Wisama Khalil,et al.  Identification of the minimum inertial parameters of robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[10]  J. Kleinfinger Modelisation dynamique de robots a chaine : cinematique simple, arborescente, ou fermee, en vue de leur commande , 1986 .

[11]  Koji Yoshida,et al.  Base parameters of dynamic models for manipulators with rotational and translational joints , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[12]  W. Khalil,et al.  The use of the generalized links to determine the minimum inertial parameters of robots , 1990, J. Field Robotics.

[13]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[14]  Wisama Khalil,et al.  A direct determination of minimum inertial parameters of robots , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[15]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[16]  Michael W. Walker,et al.  Basis sets for manipulator inertial parameters , 1989, Proceedings, 1989 International Conference on Robotics and Automation.