Which phonons contribute most to negative thermal expansion in ScF3?
暂无分享,去创建一个
[1] V. Heine,et al. The Rigid Unit Mode model: review of ideas and applications. , 2023, Reports on progress in physics. Physical Society.
[2] M. Dove,et al. Review: Pair distribution functions from neutron total scattering for the study of local structure in disordered materials , 2022, Nuclear Analysis.
[3] X. Xing,et al. Negative thermal expansion in framework structure materials , 2021, Coordination Chemistry Reviews.
[4] I. da Silva,et al. Colossal Pressure-Induced Softening in Scandium Fluoride. , 2020, Physical review letters.
[5] Jun Chen,et al. Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6 , 2019, Physical Review B.
[6] M. Dove. Flexibility of network materials and the Rigid Unit Mode model: a personal perspective , 2019, Philosophical Transactions of the Royal Society A.
[7] B. Fultz,et al. Entropic elasticity and negative thermal expansion in a simple cubic crystal , 2019, Science Advances.
[8] Juan Du,et al. Quantitative understanding of negative thermal expansion in scandium trifluoride from neutron total scattering measurements , 2019 .
[9] A. Kuzmin,et al. Negative thermal expansion of ScF3: first principles vs empirical molecular dynamics , 2019, IOP Conference Series: Materials Science and Engineering.
[10] Terumasa Tadano,et al. First-principles study of phonon anharmonicity and negative thermal expansion in ScF3 , 2018, Physical Review Materials.
[11] G. G. Guzmán-Verri,et al. Negative Thermal Expansion Near the Precipice of Structural Stability in Open Perovskites , 2018, Front. Chem..
[12] Qiang Sun,et al. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF3 Nanoscale Frameworks. , 2018, Journal of the American Chemical Society.
[13] G. G. Guzmán-Verri,et al. Negative thermal expansion near two structural quantum phase transitions , 2017, 1712.01446.
[14] M. Gupta,et al. Phonons and Anomalous Thermal Expansion Behaviour in Crystalline Solids , 2017, 1711.07267.
[15] A. Said,et al. Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF 3 , 2016 .
[16] Y. Sun,et al. Size effects on negative thermal expansion in cubic ScF3 , 2016 .
[17] J. Deng,et al. New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the "Guitar-String" Effect in Cubic ScF3. , 2016, Journal of the American Chemical Society.
[18] R. Evarestov,et al. Interpretation of unexpected behavior of infrared absorption spectra of ScF 3 beyond the quasiharmonic approximation , 2016 .
[19] H. Fang,et al. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation , 2016, Reports on progress in physics. Physical Society.
[20] Ambroise van Roekeghem,et al. Anomalous thermal conductivity and suppression of negative thermal expansion in ScF3 , 2016, 1601.00561.
[21] T. Bučko,et al. Negative thermal expansion of ScF 3 : Insights from density-functional molecular dynamics in the isothermal-isobaric ensemble , 2015 .
[22] G. G. Guzmán-Verri,et al. Large isotropic negative thermal expansion above a structural quantum phase transition , 2015, 1712.02865.
[23] S. Deng,et al. First‐Principles Study of Sc1−xTixF3 (x ≤ 0.375): Negative Thermal Expansion, Phase Transition, and Compressibility , 2015 .
[24] D. Palmer. Visualization and analysis of crystal structures using CrystalMaker software , 2015 .
[25] Qiang Sun,et al. Negative thermal expansion in isostructural cubic ReO3 and ScF3: A comparative study , 2015 .
[26] J. Deng,et al. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.
[27] Michel B. Johnson,et al. The heat capacities of thermomiotic ScF3 and ScF3–YF3 solid solutions , 2015, Journal of Materials Science.
[28] A. Wilkinson,et al. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc 1−x Al x F 3 , 2015 .
[29] M. Dove,et al. Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12 , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[30] A. Goodwin,et al. Acoustic phonons and negative thermal expansion in MOF-5. , 2014, Physical chemistry chemical physics : PCCP.
[31] H. Fang,et al. Common origin of exotic properties in ceramic and hybrid negative thermal expansion materials , 2014, 1405.2422.
[32] K. Refson,et al. Framework flexibility and the negative thermal expansion mechanism of copper(I) oxide Cu 2 O , 2014, 1402.1026.
[33] K. Chapman,et al. Negative thermal expansion and compressibility of Sc1–xYxF3 (x≤0.25) , 2013 .
[34] Kristin A. Persson,et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .
[35] C. Lind,et al. Two Decades of Negative Thermal Expansion Research: Where Do We Stand? , 2012, Materials.
[36] B. Fultz,et al. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. , 2011, Physical review letters.
[37] K. Chapman,et al. Pronounced negative thermal expansion from a simple structure: cubic ScF(3). , 2010, Journal of the American Chemical Society.
[38] C. Smith,et al. Negative thermal expansion: a review , 2009 .
[39] M. Dove,et al. Pair distribution functions calculated from interatomic potential models using the General Utility Lattice Program , 2007 .
[40] S. Clark,et al. Variational density-functional perturbation theory for dielectrics and lattice dynamics. , 2006 .
[41] Matt Probert,et al. First principles methods using CASTEP , 2005 .
[42] N. Allan,et al. Negative thermal expansion , 2005 .
[43] John S. O. Evans,et al. Negative Thermal Expansion Materials , 2004 .
[44] Julian D. Gale,et al. The General Utility Lattice Program (GULP) , 2003 .
[45] K. S. Aleksandrov,et al. Lattice dynamics and hydrostatic-pressure-induced phase transitions in ScF3 , 2002 .
[46] Stefano de Gironcoli,et al. Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.
[47] Martin T. Dove,et al. Geometrical Origin and Theory of Negative Thermal Expansion in Framework Structures , 1999 .
[48] Arthur W. Sleight,et al. Compounds That Contract on Heating , 1998 .
[49] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[50] V. Heine,et al. Rigid-unit phonon modes and structural phase transitions in framework silicates , 1996 .
[51] V. Heine,et al. Distortions of framework structures , 1996 .
[52] V. Heine,et al. Rigid unit modes in framework silicates , 1995, Mineralogical Magazine.
[53] V. Heine,et al. The Determination of Rigid-Unit Modes as Potential Soft Modes for Displacive Phase Transitions in Framework Crystal Structures , 1993 .
[54] V. Heine,et al. On the application of mean-field and landau theory to displacive phase transitions , 1992 .
[55] R. Cowley,et al. The continuous melting transition of a three-dimensional crystal at a planar elastic instability , 1988 .
[56] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[57] J. G. Collins,et al. The thermal expansion of alkali halides at low temperatures - II. Sodium, rubidium and caesium halides , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[58] G. White. The thermal expansion of alkali halides at low temperatures , 1965, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.
[59] E. Grueneisen. The State of a Solid Body , 1959 .
[60] J. Maxwell,et al. The Scientific Papers of James Clerk Maxwell: On the Calculation of the Equilibrium and Stiffness of Frames , 1864 .
[61] Catherine A. Whitman,et al. Negative Thermal Expansion (Thermomiotic) Materials , 2013 .
[62] Julian D. Gale,et al. GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .
[63] J. D. V. D. Waals,et al. Thermische Eigenschaften der Stoffe , 1926 .
[64] E. Grüneisen,et al. Theorie des festen Zustandes einatomiger Elemente , 1912 .