Tracking Mobile Intruders in an Art Gallery: Guard Deployment Strategies, Fundamental Limitations, and Performance Guarantees

This paper addresses the problem of tracking mobile intruders in a polygonal environment. We assume that a team of diagonal guards is deployed inside the polygon to provide mobile coverage. First, we formulate the problem of tracking a mobile intruder inside a polygonal environment as a multi-robot task allocation (MRTA) problem. Leveraging on guard deployment strategies in art gallery problems for mobile coverage, we show that the problem of finding the minimum speed of guards to persistently track a single mobile intruder is NP-hard. Next, for a given maximum speed of the intruder and the guards, we propose a technique to partition a polygon, and compute a feasible allocation of guards to the partitions. We prove the correctness of the proposed algorithm, and show its completeness for a specific class of inputs. We classify the guards based on the structural properties of the partitions allocated to them. Based on the classification, we propose motion strategy for the guards to track the mobile intruder when it is located in the partition allocated to the guard. Finally, we extend the proposed technique to address guard deployment and allocation strategies for non-simple polygons and multiple intruders.

[1]  Hobart R. Everett,et al.  Automated security response robot , 1999, Other Conferences.

[2]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[3]  Anthony Stentz,et al.  A Free Market Architecture for Coordinating Multiple Robots , 1999 .

[4]  J. Kahn,et al.  Traditional Galleries Require Fewer Watchmen , 1983 .

[5]  Sanjeev Khanna,et al.  Target tracking with distributed sensors: the focus of attention problem , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[6]  Michael Kaufmann,et al.  On the Rectilinear Art Gallery Problem - Algorithmic Aspects , 1990, WG.

[7]  Li Xue-jun Offset of Planar Curves Based on Polylines , 2001 .

[8]  D. P. Barnes,et al.  Behaviour synthesis for co-operant mobile robot control , 1991 .

[9]  Marcin Pilipczuk,et al.  Exponential-Time Approximation of Hard Problems , 2008, ArXiv.

[10]  Jaynendra Kumar Rai,et al.  Wadoro: An autonomous mobile robot for surveillance , 2016, 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES).

[11]  Ron Wein,et al.  Exact and approximate construction of offset polygons , 2007, Comput. Aided Des..

[12]  Godfried T. Toussaint,et al.  Computational Geometric Problems in Pattern Recognition , 1982 .

[13]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[14]  Nobuto Matsuhira,et al.  Development of robotic transportation system - Shopping support system collaborating with environmental cameras and mobile robots - , 2010, ISR/ROBOTIK.

[15]  Dana Moshkovitz The Projection Games Conjecture and the NP-Hardness of ln n-Approximating Set-Cover , 2015, Theory Comput..

[16]  Vijay Kumar,et al.  Dynamic role assignment for cooperative robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  Lynne E. Parker,et al.  Distributed Algorithms for Multi-Robot Observation of Multiple Moving Targets , 2002, Auton. Robots.

[18]  Janusz Kacprzyk,et al.  Global path planning for a specialized autonomous robot for intrusion detection in wireless sensor networks (WSNs) using a new evolutionary algorithm , 2017, KKA.

[19]  Henry Y. K. Lau,et al.  Intelligent Robot-Assisted Humanitarian Search and Rescue System , 2009 .

[20]  Tarik Veli Mumcu,et al.  Autonomous intruder detection system using wireless networked mobile robots , 2012, 2012 IEEE Symposium on Computers and Communications (ISCC).

[21]  Marek Cygan,et al.  Exponential-time approximation of weighted set cover , 2009, Inf. Process. Lett..

[22]  Camillo J. Taylor,et al.  Dynamic Sensor Planning and Control for Optimally Tracking Targets , 2003, Int. J. Robotics Res..

[23]  Vijay Kumar,et al.  Detecting, Localizing, and Tracking an Unknown Number of Moving Targets Using a Team of Mobile Robots , 2015, ISRR.

[24]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[25]  Luitpold Babel Finding maximum cliques in arbitrary and in special graphs , 2005, Computing.

[26]  Stefano Carpin,et al.  A cooperative distributed approach to target motion control in multirobot observation of multiple targets , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Philippe Pasquier,et al.  Fault-Tolerant Multi-Robot Area Coverage with Limited Visibility , 2010 .

[28]  Sungchul Kang,et al.  Double-track mobile robot for hazardous environment applications , 2001, Adv. Robotics.

[29]  Egon Balas,et al.  Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring , 1996, Algorithmica.

[30]  Jun-Hai Yong,et al.  An offset algorithm for polyline curves , 2007, Comput. Ind..

[31]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[32]  Ümit Özgüner,et al.  Motion planning for multitarget surveillance with mobile sensor agents , 2005, IEEE Transactions on Robotics.

[33]  Henk Meijer,et al.  Motivating lazy guards , 1995, CCCG.

[34]  Stephane Durocher,et al.  A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras , 2013, IWOCA.

[35]  Jorge Urrutia,et al.  Guarding rectangular art galleries , 1994, Discret. Appl. Math..

[36]  Hans-Dietrich Hecker,et al.  Two NP-Hard Art-Gallery Problems for Ortho-Polygons , 1995, Math. Log. Q..

[37]  Lynne E. Parker,et al.  Cooperative Robotics for Multi-Target Observation , 1999, Intell. Autom. Soft Comput..

[38]  Maja J. Mataric,et al.  Broadcast of Local Elibility for Multi-Target Observation , 2000, DARS.

[39]  Steve Fisk,et al.  A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.

[40]  Arcangelo Distante,et al.  An Autonomous Mobile Robotic System for Surveillance of Indoor Environments , 2010 .

[41]  Manjish Pal,et al.  The Focus of Attention Problem Revisited , 2008, CCCG.

[42]  Rachid Alami,et al.  M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[43]  Zhi Yan,et al.  Multi-robot Decentralized Exploration using a Trade-based Approach , 2011, ICINCO.

[44]  Zhe Xu,et al.  Decentralized Coordinated Tracking with Mixed Discrete–Continuous Decisions , 2013, J. Field Robotics.

[45]  Philippe Pasquier,et al.  Complete and robust cooperative robot area coverage with limited range , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.

[47]  Peter Slavík A Tight Analysis of the Greedy Algorithm for Set Cover , 1997, J. Algorithms.

[48]  Subir Kumar Ghosh,et al.  Approximation algorithms for art gallery problems in polygons , 2010, Discret. Appl. Math..

[49]  David C. Kay,et al.  Convexity and a certain propertyPm , 1970 .

[50]  Vijay Kumar,et al.  Distributed multi-robot task assignment and formation control , 2008, 2008 IEEE International Conference on Robotics and Automation.

[51]  Maja J. Mataric,et al.  Multi-robot task allocation: analyzing the complexity and optimality of key architectures , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[52]  Shinji Yamamoto Development of inspection robot for nuclear power plant , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[53]  Stefano Carpin,et al.  Cooperative Observation of Multiple Moving Targets: an algorithm and its formalization , 2007, Int. J. Robotics Res..

[54]  Rajiv Gandhi,et al.  An improved approximation algorithm for vertex cover with hard capacities , 2006, J. Comput. Syst. Sci..

[55]  Jun Ota,et al.  Transportation of a large object by small mobile robots using hand carts , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[56]  Andrea Gasparri,et al.  Robotic Wireless Sensor Networks , 2017, Mission-Oriented Sensor Networks and Systems.

[57]  Lynne E. Parker,et al.  Cooperative multi-robot observation of multiple moving targets , 1997, Proceedings of International Conference on Robotics and Automation.

[58]  Gang Yu,et al.  A Modified Greedy Heuristic for the Set Covering Problem with Improved Worst Case Bound , 1993, Inf. Process. Lett..

[59]  Mark de Berg,et al.  Guarding monotone art galleries with sliding cameras in linear time , 2014, J. Discrete Algorithms.

[60]  Nazir Ahmad Zafar,et al.  Robot-based forest fire detection and extinguishing model , 2016, 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI).

[61]  Marilena Vendittelli,et al.  Real-time map building and navigation for autonomous robots in unknown environments , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[62]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[63]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[64]  Iyad A. Kanj,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[65]  Sang C. Park,et al.  A pair-wise offset algorithm for 2D point-sequence curve , 1999, Comput. Aided Des..

[66]  Uriel Feige,et al.  Approximating Maximum Clique by Removing Subgraphs , 2005, SIAM J. Discret. Math..

[67]  Joseph S. B. Mitchell,et al.  Locating Guards for Visibility Coverage of Polygons , 2007, Int. J. Comput. Geom. Appl..

[68]  Mohammad Ghodsi,et al.  Covering Orthogonal Polygons with Sliding k-Transmitters , 2014, CCCG.

[69]  Maja J. Mataric,et al.  Principled Communication for Dynamic Multi-robot Task Allocation , 2000, ISER.

[70]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[71]  Changjoo Nam,et al.  Assignment algorithms for modeling resource contention and interference in multi-robot task-allocation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[72]  Stephane Durocher,et al.  Guarding Orthogonal Art Galleries Using Sliding Cameras: Algorithmic and Hardness Results , 2013, MFCS.

[73]  Huosheng Hu,et al.  Toward Intelligent Security Robots: A Survey , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[74]  Gaurav S. Sukhatme,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems Multi-robot Task Allocation through Vacancy Chain Scheduling , 2022 .

[75]  Stephan Eidenbenz,et al.  Inapproximability Results for Guarding Polygons without Holes , 1998, ISAAC.

[76]  David R. Wood,et al.  An algorithm for finding a maximum clique in a graph , 1997, Oper. Res. Lett..

[77]  Stefano Carpin,et al.  Multirobot cooperation for surveillance of multiple moving targets - a new behavioral approach , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[78]  Gaurav S. Sukhatme,et al.  Tracking Anonymous Targets using a Robotics Sensor Network , 2002 .

[79]  Maki K. Habib,et al.  The Pemex-B autonomous demining robot: perception and navigation strategies , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[80]  Stephane Durocher,et al.  Guarding orthogonal art galleries with sliding cameras , 2017, Comput. Geom..

[81]  Gaurav S. Sukhatme,et al.  Cooperative multi-robot control for target tracking with onboard sensing 1 , 2015, Int. J. Robotics Res..

[82]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[83]  Kristina Lerman,et al.  Analysis of Dynamic Task Allocation in Multi-Robot Systems , 2006, Int. J. Robotics Res..

[84]  Michael Milford,et al.  Action recognition: From static datasets to moving robots , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[85]  Kejun Wang,et al.  Video-Based Abnormal Human Behavior Recognition—A Review , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[86]  Mohammad AlMahmud Algorithms for minimum length sliding camera problem , 2016 .

[87]  Vangelis Th. Paschos,et al.  Efficient approximation of min set cover by moderately exponential algorithms , 2009, Theor. Comput. Sci..

[88]  Hosam Hanna,et al.  Decentralized approach for multi-robot task allocation problem with uncertain task execution , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[89]  Lino Marques,et al.  Robots for Environmental Monitoring: Significant Advancements and Applications , 2012, IEEE Robotics & Automation Magazine.

[90]  Sebastian Thrun,et al.  Large-Scale Robotic 3-D Mapping of Urban Structures , 2004, ISER.

[91]  Stephane Durocher,et al.  A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras , 2014, IWOCA.

[92]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[93]  Joseph O'Rourke,et al.  Galleries need fewer mobile guards: A variation on Chvátal's theorem , 1983 .

[94]  M. Majerus,et al.  Autonomous mine detection system (AMDS) neutralization payload module , 2010, Defense + Commercial Sensing.

[95]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[96]  Francisco S. Melo,et al.  A Decision-Making Framework for Networked Multiagent Systems , 2017 .