The Basal Forebrain Regulates Global Resting-State fMRI Fluctuations

[1]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[2]  Kevin Murphy,et al.  Towards a consensus regarding global signal regression for resting state functional connectivity MRI , 2017, NeuroImage.

[3]  Zhaohua Ding,et al.  Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates. , 2017, Magnetic resonance imaging.

[4]  Wei Gao,et al.  Emergence of a hierarchical brain during infancy reflected by stepwise functional connectivity , 2017, Human brain mapping.

[5]  Frank G. Hillary,et al.  Injured Brains and Adaptive Networks: The Benefits and Costs of Hyperconnectivity , 2017, Trends in Cognitive Sciences.

[6]  Timothy O. Laumann,et al.  Sources and implications of whole-brain fMRI signals in humans , 2017, NeuroImage.

[7]  Daniel Glen,et al.  Three-Dimensional Digital Template Atlas of the Macaque Brain , 2016, Cerebral cortex.

[8]  J. L. Cantero,et al.  Volume Loss of the Nucleus Basalis of Meynert is Associated with Atrophy of Innervated Regions in Mild Cognitive Impairment , 2016, Cerebral cortex.

[9]  Ilya E Monosov,et al.  Multiple Mechanisms for Processing Reward Uncertainty in the Primate Basal Forebrain , 2016, The Journal of Neuroscience.

[10]  Damien A. Fair,et al.  The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala , 2016, Neuron.

[11]  M. Schölvinck,et al.  Tracking brain arousal fluctuations with fMRI , 2016, Proceedings of the National Academy of Sciences.

[12]  R. McCarley,et al.  Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study , 2016, The Journal of Neuroscience.

[13]  Biyu J. He,et al.  Spontaneous Neural Dynamics and Multi-scale Network Organization , 2016, Front. Syst. Neurosci..

[14]  Vaughn L. Hetrick,et al.  Cortical cholinergic signaling controls the detection of cues , 2016, Proceedings of the National Academy of Sciences.

[15]  F. LaFerla,et al.  AF710B, a Novel M1/σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer's Disease , 2015, Neurodegenerative Diseases.

[16]  Seiji Nishino,et al.  Basal forebrain circuit for sleep-wake control , 2015, Nature Neuroscience.

[17]  Marshall G. Hussain Shuler,et al.  Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition , 2015, The Journal of Neuroscience.

[18]  Shi-Chieh Lin,et al.  Basal forebrain motivational salience signal enhances cortical processing and decision speed , 2015, Front. Behav. Neurosci..

[19]  B. Hangya,et al.  Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback , 2015, Cell.

[20]  Keith A. Johnson,et al.  Neuropsychiatric Symptoms and Functional Connectivity in Mild Cognitive Impairment. , 2015, Journal of Alzheimer's disease : JAD.

[21]  C. Geula,et al.  Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. , 2015, Brain : a journal of neurology.

[22]  Ilya E. Monosov,et al.  Neurons in the Primate Medial Basal Forebrain Signal Combined Information about Reward Uncertainty, Value, and Punishment Anticipation , 2015, The Journal of Neuroscience.

[23]  G. Ji,et al.  Changes in Thalamic Connectivity in the Early and Late Stages of Amnestic Mild Cognitive Impairment: A Resting-State Functional Magnetic Resonance Study from ADNI , 2015, PloS one.

[24]  C. Geula,et al.  Neuronal amyloid- b accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease , 2015 .

[25]  Z. Nadasdy,et al.  Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. , 2015, Cerebral cortex.

[26]  Sheng Zhang,et al.  Resting state functional connectivity of the basal nucleus of Meynert in humans: In comparison to the ventral striatum and the effects of age , 2014, NeuroImage.

[27]  Michael W. Cole,et al.  Altered global brain signal in schizophrenia , 2014, Proceedings of the National Academy of Sciences.

[28]  J. Reynolds,et al.  Expression of m1‐type muscarinic acetylcholine receptors by parvalbumin‐immunoreactive neurons in the primary visual cortex: A comparative study of rat, guinea pig, ferret, macaque, and human , 2014, The Journal of comparative neurology.

[29]  Robert Desimone,et al.  Subcortical connections of area V4 in the macaque , 2000, The Journal of comparative neurology.

[30]  Thomas T. Liu,et al.  The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures , 2013, NeuroImage.

[31]  Ravi S. Menon,et al.  Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques , 2013, Human brain mapping.

[32]  Fenna M. Krienen,et al.  Opportunities and limitations of intrinsic functional connectivity MRI , 2013, Nature Neuroscience.

[33]  Xiao Liu,et al.  EEG correlates of time-varying BOLD functional connectivity , 2013, NeuroImage.

[34]  S. H. Kim,et al.  Blockade of Tau Hyperphosphorylation and Aβ1–42 Generation by the Aminotetrahydrofuran Derivative ANAVEX2-73, a Mixed Muscarinic and σ1 Receptor Agonist, in a Nontransgenic Mouse Model of Alzheimer’s Disease , 2013, Neuropsychopharmacology.

[35]  David A. Leopold,et al.  Ongoing physiological processes in the cerebral cortex , 2012, NeuroImage.

[36]  S. Everling,et al.  Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations , 2012, Front. Neuroanat..

[37]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[38]  Ning Liu,et al.  A novel, variable angle guide grid for neuronal activity studies , 2011, Front. Integr. Neurosci..

[39]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[40]  G. Orban,et al.  Default Mode of Brain Function in Monkeys , 2011, The Journal of Neuroscience.

[41]  J. Heiss,et al.  Effect of concentration on the accuracy of convective imaging distribution of a gadolinium-based surrogate tracer. , 2011, Journal of neurosurgery.

[42]  T. Arendt,et al.  The cholinergic system in aging and neuronal degeneration , 2011, Behavioural Brain Research.

[43]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[44]  Joseph S. Gati,et al.  Resting-state networks in the macaque at 7T , 2011, NeuroImage.

[45]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[46]  Janita Turchi,et al.  Pulvinar Inactivation Disrupts Selection of Movement Plans , 2010, The Journal of Neuroscience.

[47]  M. Schölvinck,et al.  Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.

[48]  Archana Venkataraman,et al.  Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. , 2010, Journal of neurophysiology.

[49]  Gustavo Deco,et al.  Effective Reduced Diffusion-Models: A Data Driven Approach to the Analysis of Neuronal Dynamics , 2009, PLoS Comput. Biol..

[50]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[51]  Fenna M. Krienen,et al.  Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity , 2009, Cerebral cortex.

[52]  N. Filippini,et al.  Distinct patterns of brain activity in young carriers of the APOE e4 allele , 2009, NeuroImage.

[53]  M. Raichle,et al.  Cortical network functional connectivity in the descent to sleep , 2009, Proceedings of the National Academy of Sciences.

[54]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[55]  Viktor K. Jirsa,et al.  Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire , 2008, PLoS Comput. Biol..

[56]  Katrin Amunts,et al.  Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain , 2008, NeuroImage.

[57]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[58]  Biyu J. He,et al.  Loss of Resting Interhemispheric Functional Connectivity after Complete Section of the Corpus Callosum , 2008, The Journal of Neuroscience.

[59]  M. Fukunaga,et al.  Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG‐fMRI study , 2008, Human brain mapping.

[60]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[61]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[62]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[63]  F. Ye,et al.  Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE) , 2007, Magnetic resonance in medicine.

[64]  L. Heimer,et al.  The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior , 2006, Neuroscience & Biobehavioral Reviews.

[65]  Roel H. R. Deckers,et al.  Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. , 2006, Magnetic resonance imaging.

[66]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[67]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[68]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[69]  H. Braak,et al.  Alzheimer's disease affects limbic nuclei of the thalamus , 2004, Acta Neuropathologica.

[70]  David P. Friedman,et al.  A comparison between the connections of the amygdala and hippocampus with the basal forebrain in the macaque , 2004, Experimental Brain Research.

[71]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[72]  A. Damasio,et al.  Differential distribution of calbindin D28k and parvalbumin among functionally distinctive sets of structures in the macaque brainstem , 2003, The Journal of comparative neurology.

[73]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[74]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[75]  H. Barbas,et al.  Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey , 2001, Neuroscience.

[76]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[77]  若林 賢彦,et al.  ヒトおよびラット膀胱におけるLow-affinity nerve growth factor receptorに関する免疫組織化学的研究 , 1996 .

[78]  D. Rosene Comparing age-related changes in the basal forebrain and hippocampus of the rhesus monkey , 1993, Neurobiology of Aging.

[79]  C. Geula,et al.  Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer's disease , 1993, The Journal of comparative neurology.

[80]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[81]  D. Price,et al.  Cellular localizations of AMPA glutamate receptors within the basal forebrain magnocellular complex of rat and monkey , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  Low-affinity nerve growth factor receptor (p75NGFR)- and choline acetyltransferase (ChAT)-immunoreactive axons in the cerebral cortex and hippocampus of adult macaque monkeys and humans. , 1993, Cerebral cortex.

[83]  C. L. Cox,et al.  Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  Leslie G. Ungerleider,et al.  Subcortical connections of visual areas MST and FST in macaques , 1992, Visual Neuroscience.

[85]  M. Delong,et al.  Fiber pathways of basal forebrain cholinergic neurons in monkeys , 1987, Brain Research.

[86]  A. Levey,et al.  Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase , 1984, Neurochemistry International.

[87]  R. Doty,et al.  Nongeniculate afferents to striate cortex in macaques , 1983, The Journal of comparative neurology.

[88]  A. Levey,et al.  Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey , 1983, The Journal of comparative neurology.

[89]  T. Powell,et al.  The projection of the basal nucleus of Meynert upon the neocortex in the monkey , 1983, Brain Research.

[90]  M. Mesulam,et al.  Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex , 1976, Brain Research.

[91]  P. Deluca,et al.  Consequences of microbial contamination during extended intravenous therapy using inline filters. , 1975, American journal of hospital pharmacy.

[92]  Walle J. H. Nauta,et al.  Some ascending pathways in the brain stem reticular formation. , 1958 .

[93]  H. Magoun,et al.  An ascending reticular activating system in the brain stem. , 1952, Harvey lectures.