Subset selection for vector autoregressive processes using Lasso

A subset selection method is proposed for vector autoregressive (VAR) processes using the Lasso [Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B 58, 267-288] technique. Simply speaking, Lasso is a shrinkage method in a regression setup which selects the model and estimates the parameters simultaneously. Compared to the conventional information-based methods such as AIC and BIC, the Lasso approach avoids computationally intensive and exhaustive search. On the other hand, compared to the existing subset selection methods with parameter constraints such as the top-down and bottom-up strategies, the Lasso method is computationally efficient and its result is robust to the order of series included in the autoregressive model. We derive the asymptotic theorem for the Lasso estimator under VAR processes. Simulation results demonstrate that the Lasso method performs better than several conventional subset selection methods for small samples in terms of prediction mean squared errors and estimation errors under various settings. The methodology is applied to modeling U.S. macroeconomic data for illustration.

[1]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[2]  Helmut Lütkepohl,et al.  Econometric studies : a festschrift in honour of Joachim Frohn , 2001 .

[3]  Helmut Lütkepohl,et al.  Lag Selection in Subset VAR Models with an Application to a U.S. Monetary System , 2000 .

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[6]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[7]  Jammie H. Penm,et al.  Using the Bootstrap as an Aid in Choosing the Approximate Representation for Vector Time Series , 1992 .

[8]  A. I. McLeod,et al.  Distribution of the Residual Autocorrelations in Multivariate Arma Time Series Models , 1981 .

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  T. W. Anderson,et al.  Statistical analysis of time series , 1972 .

[11]  R. Terrell,et al.  Multivariate subset autoregressive modelling with zero constraints for detecting ‘overall causality’ , 1984 .

[12]  Cheng Hsiao,et al.  Autoregressive Modeling of Canadian Money and Income Data , 1979 .

[13]  J. R. M. Hosking,et al.  The Multivariate Portmanteau Statistic , 1980 .

[14]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[15]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[16]  G. C. Tiao,et al.  Modeling Multiple Time Series with Applications , 1981 .

[17]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[18]  J. R. M. Hosking,et al.  Lagrange‐Multiplier Tests of Multivariate Time‐Series Models , 1981 .

[19]  Richard Terrell,et al.  ON THE RECURSIVE FITTING OF SUBSET AUTOREGRESSIONS , 1982 .

[20]  G. C. Tiao,et al.  Modeling Satellite Ozone Data , 1995 .

[21]  Ruey S. Tsay,et al.  A Unified Approach to Identifying Multivariate Time Series Models , 1998 .

[22]  David F. Hendry,et al.  Computer Automation of General-to-Specific Model Selection Procedures , 2001 .

[23]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[24]  Helmut Lütkepohl,et al.  Introduction to multiple time series analysis , 1991 .

[25]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[26]  Chih-Ling Tsai,et al.  Regression coefficient and autoregressive order shrinkage and selection via the lasso , 2007 .

[27]  Richard A. Davis,et al.  Order Determination for Multivariate Autoregressive Processes Using Resampling Methods , 1996 .